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Navier�Stokes Limit for a Thermal Stochastic
Lattice Gas
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We study a stochastic particle system on the lattice whose particles move freely
according to a simple exclusion process and change velocities during collisions
preserving energy and momentum. In the hydrodynamic limit, under diffusive
space-time scaling, the local velocity field u satisfies the incompressible Navier�
Stokes equation, while the temperature field % solves the heat equation with drift u.
The results are also extended to include a suitably resealed external force.

KEY WORDS: Stochastic particle systems; hydrodynamic limit; Navier�
Stokes equations.

1. INTRODUCTION AND RESULTS

In last few years a big development in the study of the hydrodynamical
limit of stochastic particle systems has been obtained thanks to the intro-
duction of new powerful probabilistic tools ([GPV], [Y1], [V]). In par-
ticular, the analysis of the simple exclusion process and related models
([X], [EMY1], [LOY1], [LOY2], [LY], [EMY3], [QY], [VY]) on
the diffusive space-time scale was made possible by the introduction of the
non-gradient method due to Varadhan [V], which also permits to obtain
very clean variational formulas for the diffusion coefficients, providing
mathematical support to the classical heuristic Green�Kubo formulas.
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In this paper we consider the following model: particles of several
colors, labeled by vectors v # V/R3 are considered. The cardinality of V

is finite and set to N. The particles of the color v move on the lattice Z3

according to the simple exclusion process, i.e., they can only jump, at inde-
pendent exponential times, to nearest neighbors (provided that the target
site in not already occupied by a particle of the same color) with rates such
that the drift is v. The vectors v # V are called velocities of the particles.
The set of velocities V is assumed invariant under rotations and permuta-
tions of the coordinate axes.

Particles change velocity during collisions: in sites where couples of
particles are present, they undergo collisions at exponential independent
times, subject to the only restriction that the total outgoing momentum
and energy equal the incoming ones.

Our model differs from the one introduced in [EMY3] because in the
latter model velocities have all the same modulus so that the energy and
the mass coincide, while our model introduce two different species of par-
ticles corresponding to different kinetic energies, so that thermal effects in
the hydrodynamic equations can be obtained.

In [EMY3] and [QY] space and time are rescaled diffusively with a
scale parameter = and the local velocity is assumed of order = (low Mach
numbers limit). If the space dimension d is greater or equal to three, under
some assumptions on the initial data, a law of large numbers is proved for
the mass and momentum density and the limiting fields satisfy an incom-
pressible Navier�Stokes type equation. For d=3 this becomes exactly the
Navier�Stokes equation for a suitable choice of the set of velocities V.
Some anisotropy in the viscosity matrix is present, due to the lattice
structure.

The model we consider in this paper will show a similar behavior on
the diffusive scale, but, since the energy is non trivial, a heat equation is
also obtained in the scaling limit. The main problem for achieving this
result is to find a model with the local ergodic property which also
produces hydrodynamical equations of the usual form.

The simplest three dimensional example we were able to construct is
the following model where we have exactly two values of |v|: V=V1 _ V2

with V1=[(\1, \1, \1)] and V2=[(\1, \1\|)], up to permuta-
tions, with |{1. If |2 is irrational it is possible to check (Proposition 2.1)
that the only invariants for this model are mass, momentum and energy.

The structure of the invariants allows to introduce the Gibbs states for
the system. Due to the absence of interactions between the particles, but for
the exclusion, they are product states parametrized by the chemical poten-
tials *: , :=0,..., 4, conjugate to the conserved quantities. Let I0(x) denote
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the total mass in the site x, Ij (x), for j=1,..., 3 the components of the total
momentum in x and I4(x) the total energy in x. Then a Gibbs state in the
finite box 4 is a measure whose density, with respect to the uniform dis-
tribution of the configurations, is given by

Z&1 `
x # 4

exp :
4

:=0

*: I:(x)

with Z the normalization factor.
Because of the presence of a non trivial energy it is possible to intro-

duce for the system a notion of temperature. As usual when dealing with
models with a discrete set of velocities (see [C], [ED]), this can be done
in several ways. We will follow the rule of defining the temperature with the
help of the Gibbs states. The chemical potential associated to the energy,
*4 , can be interpreted as the inverse of the temperature of the system and
we take this as definition of temperature. Since the velocities are discrete,
this temperature does not coincide with the variance of the velocity dis-
tribution. However, we remark that, since we will only consider deviations
of order = of the temperature from a constant profile, in order to fulfill the
low Mach number assumption, the various possible definitions of tem-
perature coincide up to higher orders in = and we can disregard the
ambiguity of the definition.

As usual (see [S], [EM], [EMY3]) a formal argument, based on the
local equilibrium assumption, can be given to guess the structure of the
limiting equations. The local equilibrium assumption means that the non
equilibrium distribution of the system is assumed to be close to a Gibbs
state with chemical potentials *=

: slowly varying with x. We also assume
low Mach numbers, which corresponds to take

*=
:(x)=* (0)

: +=* (1)
: (=x)+=2* (2)

: (=x), :=0,..., 4

with * (1)
: , * (2)

: smooth functions of the macroscopic variables and * (0)
j =0

for j=1,..., 3. We will call equilibrium measure the Gibbs measure with
parameters * (0)

: .
We assume the initial distribution of the system to be of local equilibrium

with chemical potentials satisfying the low Mach numbers assumption. We
prove that during the evolution, in the diffusive scaling the non equilibrium
distribution is close, in the sense of the relative entropy ([Y1], [OVY]) to
a local equilibrium, up to a time t such that there is a smooth solution to
the limiting equations
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div u=0

�tu;+{p+Ku } {u;= :
3

:=1

D:, ; �2
:u; (1.1)

�
�t

T+Hu } {T= :
3

:=1

K: �2
:T

Here uj , j=1,..., 3 are the components of the velocity field, proportional to
the chemical potentials * (1)

j , T is the temperature, related to the chemical
potential * (1)

4 , p is the second order correction to the pressure, D the
viscosity, K the heat conductivity. K and H are two constants depending
only on the parameters of the equilibrium measure and on the set V.
Finally the first correction to the density is related to the first correction to
the temperature T by the Boussinesq condition which ensure the constancy
of the pressure up to the second order.

About (1.1) we have several remarks: first we note that in general, as
in [EMY3], nonisotropic Euler terms are present in the limiting equations,
but we can get rid of them by an appropriate choices of | and of the
parameters of the equilibrium measure. Moreover, the constants K and H
have not a definite sign. Suitable choices of the temperature and density of
the equilibrium measure provide such a positivity (Proposition 2.2). We
also note that in the usual hydrodynamic equations K=1 and H=1. This
is not the case in the present model. We can get rid of one of them by
rescaling time, but not of both. This is usual when dealing with discrete
velocity models ([FHHLPR]). Finally, as in [EMY3], the diffusion
matrix is not completely isotropic. For similar phenomena in cellular
automata we refer to [FHHLPR]. Moreover, the contribution of the
asymmetric motion to the heat conductivity K is given by a complicated
combination of diffusion coefficients which we cannot check to be positive
in general. This is due to the fact that the equation for the density in this
model contains a diffusive part arising from the exclusion process and, as
a consequence, the diffusion matrix has not the standard form. However, it
has still some symmetry properties as a consequence of time reversal
invariance, that we prove be true for this model. For zero inverse
temperature ; the expression of K becomes sufficiently simple to be con-
trollable. In the case ;{0, the expression of K becomes so involved that,
in order to ensure its positivity and hence well posedness of the initial value
problem associated to (1.1), we have to choose the symmetric part of the
exclusion process be suitably large.

Once the local ergodicity (Proposition 2.1) and positivity properties
(Proposition 2.2 and related remarks) are proved, above results are
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obtained via the entropy method and the non-gradient method already
used in [EMY3]. The entropy method requires some non trivial modifi-
cations in order to be extended to the present model to take into account
the extra conservation law and the extra corrections of order = in the
initial datum, * (1)

0 and * (1)
4 . On the other hand the non gradient method

used in [EMY3] works without modifications also in this case since it is
based on the properties of the symmetric simple exclusion and on the fact
that the collision operator conserves only the quantities I: . The heuristics
and the proof of Propositions 2.1 and 2.2 are given in Section 2, after a
precise definition of the model. Section 3 is devoted to the entropy
method and Section 4 to the diffusion matrix. In particular, we give the
expression for the diffusion matrix and prove that the Green�Kubo for-
mulas for this model are not only formal, but rigorously equivalent to
that expression.

To conclude, we mention that hydrodynamical equations, especially in
the presence of thermal phenomena, are particularly interesting when an
external force F is present. The Benard problem of the motion of a fluid in
a slab heated from below in a gravitational field is a typical example where
convective instabilities arise. For this reason in Section 5 we propose a
method to get hydrodynamical equations containing a force. This requires
some care because we are dealing with discrete velocity models, where the
notion of acceleration is not well defined. We simulate the presence of a
force by adding to our model a birth and death process, organized in such
a way that the mass and energy conservation still hold, but during the
process a change of momentum proportional to the force is provided to the
system. This new process introduces extra difficulties because the equi-
librium measure we consider in the absence of force is no more invariant
under the full process, including the force. Therefore the relative entropy
w.r.t. the equilibrium measure is no more decreasing in time and the main
problem to adapt the entropy method to include this processes is to get an
a priori bound on the entropy production. In fact, this kind of bounds are
essential to apply the method.

The method we use to deal with the birth and death process is of per-
turbative type and seems to be useful in rather general situations, provided
that rate of birth and death is sufficiently small. Fortunately, this is the case
in the low Mach number limit, where we have to rescale the force as =3F
so that the generator of this new process is slowed down as =3. In this way
we prove the convergence to equations of the form (1.1) with the second
of them replaced by

�t u;+{p+Ku } {u;= :
3

:=1

D:, ; �2
:u;+F; (1.2)
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The force that enters in the Benard problem is conservative and to get
the right hydrodynamical equations for this case one has to rescale the
force as =2F. This scaling is borderline because the symmetric part of the
birth-death process appears in the limiting equation in the form of an addi-
tional viscous force. At the moment we do not know how to avoid this
term, which would destroy the convective instabilities arising in the classi-
cal Benard problem. Moreover, this kind of phenomena are driven by the
presence of a boundary. The problem of including boundary conditions in
the set up of entropy and non-gradient methods is still open and we plan
to discuss it in a future paper.

2. MODEL AND HEURISTICS

2.1. Description of the Model and Notations

Particles evolve on the sublattice 4L=[&L,..., L]3 with periodic
boundary conditions. We call ==L&1. Each particle has a velocity v # V,
where V is a finite subset of Rd which is invariant under any coordinate
permutation (IP) and invariant under reflexions (IR) with respect to the
orthogonal planes of the coordinate vectors ei , i=1,..., 3 with components

(ei ) j=$i, j (2.1)

We define D=[\ei , i=1,..., 3] as the set of the 6 different directions for
moving on the lattice.

The kinetic energy of a particle with velocity v is |v|2�2, where | } |
denotes the Euclidean norm on R3. In our case the particles can have
different energies.

On each site of the lattice there is at most one particle with a given
velocity. The integer '(x, v) # [0, 1] denotes the number of particles on
x # 4L with the velocity v # V, 'x=['(x, v), v # V] and 0 is the set of all
the configurations '=['x , x # 4L].

Infinitesimal Generators. The dynamics of the particles is driven
by jumps and collisions: we consider on 0 the generator L defined as

L=Lex+Lc (2.2)

Since there is only hard core interaction between the particles with the
same velocities, the operator Lex is the generator of the exclusion process
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for particles with different colors (here velocities): for any function f on 0
and any configuration ' # 0

Lexf (')= :
v # V

:
e # D

:
x # Z3

p(x, x+e, v, ')[ f ('x, x+e, v)& f (')] (2.3)

The configuration 'x, x+e, v is obtained from ' by exchanging the number
of particles with velocity v on x and x+e

'( y, v) if z=x and w=v
'x, y, v(z, w)={'(x, v) if z= y and w=v (2.4)

'(z, w) otherwise

The jump rate p(x, x+e, v, ') is defined by

p(x, x+e, v, ')='(x, v) p(e, v) (2.5)

and the intensity p(e, v) is such that the mean displacement of a particle
with velocity v is

:
e # D

p(e, v) e=v (2.6)

It is given by

p(e, v)=/+ 1
2e } v (2.7)

where the constant / is chosen large enough to prevent the rate from being
negative (e.g., 2/>max[ |v|, v # V]).

Two body collisions between particles are allowed provided that the
momentum and the kinetic energy are conserved and provided the exclu-
sion rule is preserved. A collision between two particles with incoming
velocities v, w and outgoing velocities v$, w$ is denoted by the quadruple
q=(v, w, v$, w$). The set of allowed collisions is therefore

Q=[(v, w, v$, w$) # V4 : v+w=v$+w$, |v| 2+|w|2=|v$|2+|w$|2] (2.8)

The operator Lc is the generator of the collisions: for any function f on 0
and any configuration ' # 0

Lcf (')= :
x # Z3

:
q # Q

p~ (x, q)[ f ('x, q)& f (')] (2.9)
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If q=(v, w, v$, w$), the collision rate p~ (x, q) is defined as

p~ (x, q)='(x, v) '(x, w)(1&'(x, v$))(1&'(x, w$)) (2.10)

and 'x, q is the configuration resulting from ' by the collision q at site x

0 if p~ (x, q)=1 and y=x and (u=v or u=w)

'x, q( y, u)={1 if p~ (x, q)=1 and y=x and (u=v$ or u=w$)

'( y, u) otherwise (2.11)

Remark that denoting Qq
x f (')= f ('x, q)& f ('), (2.9) can be rewritten as

Lcf (')= :
x # Z3

:
q # Q

Qq
x f (') (2.12)

For l<L, we call 0l the set of the particle configurations in the box
4l=[&l,..., l]3/4L . We denote by Ll the restriction of L to 4l . More
precisely Ll=Lex

l +Lc
l where Lc

l is obtained from Lc considering only
collisions at sites x # 4l and Lex

l is obtained from Lex considering only the
jumps over bonds (x, x+e)/4l .

Conserved Quantities. The total mass, the total momentum and
the total energy at the site x are

I0('x)= :
v # V

'(x, v) (2.13)

I:('x)= :
v # V

(v } e:) '(x, v), :=1,..., 3 (2.14)

I4('x)= :
v # V

1
2 |v|2 '(x, v) (2.15)

These quantities are conserved by the collision operator since
Lc

l[ g(I;('x))]=0 for any function g on R, for any x # 4l and for
;=0,..., 4.

Moreover, the jump operator Lex
l conserves the total number of par-

ticles with a given velocity. So, defining N;(')=�x # 4l
I;('x) (;=0,..., 4),

for any function g

Ll[ g(N;('))]=0 (2.16)
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We require the velocity set V to be such that N;('), ;=0,..., 4, are the
only quantities conserved by the dynamics. In other words the Markov
chain associated to Ll on the set 0l, m (m # R5) of configurations ' # 0l

with N;(')=m;(2l+1)3, ;=0,..., 4 should be ergodic. This property is
called local ergodicity (LE).

2.2. An Example of Velocity Set

In this subsection we provide an example of velocity set V satisfying
the conditions (IP), (IR), (LE) and (2.17) (see below) in the case d=3.

The set V is made of two species of velocities with different energies.
The first species V1 contain the following 8 velocities

(\1, \1, \1) (s1)

and the second species V2 contain 24 velocities given up to permutation by

(\|, \1, \1) (s2)

where | is a real different from \1. We require for the moment that | has
to be irrational.

For reasons which will be explained in the heuristic derivation of the
Navier�Stokes equations (see Subsection 2.5 below), an extra assumption
is made on V. Denoting by v: , :=1,..., 3 the components of v, we suppose
that

:
v # V

h� 2(v)[v4
1&3v2

1v2
2]=0 (2.17)

with h� 2 is defined in (2.63), depending on some parameters r, % and |. One
can see that there are couple (r, %) such that | determined by (2.17) is irra-
tional and larger than 1. For example, for %=0, and for any r we get
|2=5 - 3.

Local ergodicity

Proposition 2.1. The finite Markov chain associated to Ll on
0l, m , m # R5 is ergodic.

Proof. Let ' and ` in 0 be two configurations with the same total
mass, momentum and energy:

N;(')=N;(`), ;=0,..., 4 (2.18)
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We have to prove that ' and ` communicate (' W `), i.e., using a sequence
of jumps and collisions one can transform ' into `.

We denote by N +1
: ('), :=1,..., 3, the number of particles in the con-

figuration ' with velocity v such that v:=+1. We define in the same way
N&1

: ('), N +|
: (') and N &|

: ('). We put $f =f (')& f (`). We also denote by
'(i), i=1, 2, the configuration ' restricted to the particles with velocity of
species Vi , more precisely '(i)(x, v)='(x, v) 1[v # Vi ] where 1 is the indicator
function. We also put $(i)f =f ('(i))& f (`(i)).

In [EMY3] (Theorem 3.3) it is proved that if $(2)N;=0 for ;=0,..., 3,
then '(2) W `(2).

Step 1. We first show that the result of [EMY3] also holds for the
particles of the species V1 : if $(1)N;=0 for ;=0,..., 3, then '(1) W `(1). By
assumption

$(1)N +1
: +$(1)N &1

: and $(1)N +1
: &$(1)N &1

: =$(1)N:=0 (2.19)

so that $(1)N +1
: =$(1)N &1

: =0, for :=1,..., 3. Therefore, on a given compo-
nent, the velocities of the particles in the configuration `(1) are obtained
from those of '(1) by doing permutations. So it suffices to show that if the
velocities of the particles in `(1) are obtained from those of '(1) exchanging
the coordinates in one component of two given velocities, then '(1) W `(1).
Suppose that, for instance, the velocities of the particles are the same as
those of '(1) except that '(1) contains the two particles p1 and p2 with
velocities (1, a1 , b1) and (&1, a2 , b2) and `(1) contains the two particles p$1
and p$2 with velocities (&1, a1 , b1) and (1, a2 , b2). With a sequence of
jumps, one can move p2 (or another particle in ' with the same velocity)
to the same site as p1 , then p1 and p2 can collide

(1, a1 , b1)+(&1, a2 , b2) � (&1, a1 , b1)+(1, a2 , b2) (2.20)

If we denote by '� (1) the new configuration, then '� (1) W '(1). Moreover the
particles in '� (1) have the same velocities as the particles in `(1), so using
only jumps '� (1) W `(1). K

The proof of the local ergodicity will consist in showing that if ' and
` satisfy (2.18), then there are two configurations '� and �̀ such that ' W '� ,
` W �̀ and for ;=0,..., 3, N;('� (2))=N;( �̀ (2)). That is enough since from
(2.18), [EMY3] and Step 1, it would imply that both '(1) W `(1) and
'(2) W `(2) hold and therefore ' W `.
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Step 2. We now prove that if ' and ` satisfy (2.18), then N0('(i))=
N0(`(i)) for i=1, 2. From the conservation of mass and energy,

$(1)N0+$ (2)N0=0 and (|2+2) $(2)N0+3$(1)N0=0 (2.21)

and since |{ \1 we get $(1)N0=$(2)N0=0. K

Let l:(')=N +1
: (')&N &1

: (') and k:(')=N +|
: (')&N &|

: (').

Step 3. We claim that if ' and ` satisfy (2.18), then k:(')=k:(`),
l:(')=l:(`) and moreover both $(1)l: and $ (2)l: are even, :=1, 2, 3. We
have N:(')=k:(') |+l:('). Since | is not a rational number, it results
from (2.18) that $k:=0 and $(1)l:+$(2)l:=$l:=0. The second claim is
proven in the following way: since $(2)N0=$(2)[N 1

:+N &1
: +N |

: +N &|
: ]

and from Step 2 $(2)N0=0 we have $(2)l:+$k:=0 mod 2. Hence $k:=0
implies $(2)l:=0 mod 2 and since $(1)l:=&$(2)l: , we have also $(1)l:=
0 mod 2. K

Step 4. Construction of '� and �̀ . Suppose that, for instance, there
are more velocities of species V2 with \1 in the :-th component for ' than
for `

$(2)N +1
: +$(2)N &1

: �0 (2.22)

and suppose that l:('(2)){l:(`(2)).
First case: l:('(2))>l:(`(2)).
Summing this inequality with (2.22), we obtain N +1

: ('(2))>N +1
: (`(2)).

In particular, there is at least one particle in ' with a velocity v # V2 such
that v:=+1. By contradiction suppose that N &1

: ('(1))=0, then

N0('(1))+l:('(2))=l:(')=l:(`)=l:(`(1))+l:(` (2))<N0('(1))+l:('(2))

(2.23)

So there is at least one particle in ' with a velocity w # V1 such that
w:=&1. Let '� be a configuration obtained from ' after jumps by a colli-
sion between two particles of species V1 and V2 , with incoming velocities
v and w and outgoing velocities v$ and w$ given by v$:=&1, w$:=+1 and
v;=v$; , w;=w$; for ;{:. Then ' W '� , l:('� (2))=l:('(2))&2 and l;('� (2))=
l;('(2)) for ;{:.

Second case: l:('(2))<l:(`(2)).
Then multiplying this inequality by &1 and adding (2.22), we get

N&1
: ('(2))>N &1

: (`(2)). With the same argument as in the first case (using
&1 instead of +1 and vice-versa), one can build a configuration '� such
that ' W '� , l:('� (2))=l:('(2))+2 and l;('� (2))=l;(' (2)) for ;{:.
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If the inequality (2.22) is reversed, then we modify ` (instead of ') in
the same way. In any case, we obtain two configurations '� and �̀ such that
' W '� , ` W �̀ , |l:('� (2))&l:( �̀ (2))|=|l:('(2))&l:(`(2))|&2 and l;('� (2))&
l;( �̀ (2))=l;('(2))&l;(`(2)) for ;{:.

Arguing as in the second part of Step 3, we iterate this procedure and
we repeat it for all the three components as far as we get two configura-
tions '� and �̀ such that ' W '� , ` W �̀ and l:('� (2))=l:( �̀ (2)) for :=1,..., 3.
Since (2.18) still holds for '� and �̀ , it follows from Step 2 that N0('� (i))=
N0( �̀ (i)) for i=1, 2. Moreover, from the first part of Step 3, l:(')=l:(`) and
k:(')=k:(`), so I:('� (i))=I:( �̀ (i)) for :=1,..., 3 and i=1, 2. K

2.3. Gibbs States, Currents

Since the quantities �x # 4L
I;('x), ;=0,..., 4, are conserved by the

dynamics, the following grand canonical measures are invariant for the
generator L

+L, n(')=Z&1
L, n `

x # 4L

exp { :
4

;=0

n;I;('x)= (2.24)

where n=(n0 ,..., n4) # R5 and ZL, n is a normalization constant. All these
measures are absolutely continuous with respect to the measure +L, r, %

obtained by taking n=(r, 0, 0, 0, %):

+L, r, % (')=Z&1
L, r, % `

x # 4L

exp[rI0('x)]+%I4('x)] (2.25)

Notice that the collision generator Lc is symmetric with respect to +L, n ,
but the jump generator Lex is not. The adjoint operator L* of L with
respect to +L, n is then L*=Lex*+Lc where for any function f on 0 and
any configuration '

Lex* f (')= :
v # V

:
e # D

:
x # Z 3

p*(x, x+e, v, ')[ f ('x, x+ +e, v)& f (')] (2.26)

and

p*(x, x+e, v, ')='(x, v)[/& 1
2e } v] (2.27)
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If n(x)=(n0(x),..., n4(x)) are functions on 4L , we also call +L, n the
measure with varying chemical potentials n

+L, n(')=Z&1
L, n `

x # 4L

exp { :
4

;=0

n;(x) I;('x)= (2.28)

Then the density of particles with velocity v # V on site x # 4L is

f (x, v, n)=E +L, n['(x, v)]=
en0(x)+n

�
} v+1�2 |v|2 n4(x)

1+en0(x)+n
�

} v+1�2 |v|2 n4(x)
(2.29)

where n
�
(x)=(n1(x),..., n3(x)).

Currents. We denote by w;
x, : the current in the direction e:

(:=1,..., 3), at site x # 4L for the conserved quantity I; (;=0,..., 4). They
are defined by

L[I;('x)]= :
3

:=1

{&
: w;

x, : (2.30)

where, if g is a function on 4L ,

{&
: g(x)=({:g)(x&e:) and {:g(x)= g(x+e:)& g(x) (2.31)

Since the collision operator conserves the quantities I;('x) for any x # 4L ,
there is no contribution to the currents coming from Lc

L[I;('x)]=Lex[I;('x)] (2.32)

Similarly we define the currents w* , ;
x, : for the adjoint operator L*

L*[I;('x)]= :
3

:=1

{&
: w* , ;

x, : (2.33)

The currents wx, :(v) and w*x, :(v) related to the density of particles with
the velocity v # V for the asymmetric simple exclusions Lex and Lex* are
given by

Lex'(x, v)= :
3

:=1

{&
: wx, :(v), Lex*'(x, v)= :

3

:=1

{&
: w*x, :(v) (2.34)
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with

wx, :(v)= 1
2 ( p(e: , v)+ p(&e: , v)) {: '(x, v)+w(a)

x, :(v)

w*x, :(v)= 1
2 ( p(e: , v)+ p(&e: , v)) {: '(x, v)&w(a)

x, :(v) (2.35)

w(a)
x, :(v)=( p(e: , v)& p(&e: , v)) bx, :(v)

In this formula p(e: , v) is the intensity of the jump in the direction e:

(see (2.5)) and

bx, :(v)='(x+e: , v) '(x, v)& 1
2 ('(x+e:)+'(x, v)) (2.36)

Remark that from (2.7)

1
2 ( p(e: , v)+ p(&e: , v))=/ and p(e: , v)& p(&e: , v)=e: } v (2.37)

Using (2.32), we can now compute the currents related to the con-
served quantities for the generator L. They can be written as a sum of a
symmetric part and an antisymmetric part. For :=1,..., 3 and ;=0,..., 4

w;
x, :=/ {:I;('x)+w (a), ;

x, : (2.38)

the asymmetric mass current is

w (a), 0
x, : = :

v # V

w (a)
x, :(v)= :

v # V

(e: } v) bx, :(v) (2.39)

the asymmetric momentum current is, for :, ;=1,..., 3

w(a), ;
x, : = :

v # V

(e; } v) w (a)
x, :(v)= :

v # V

(e: } v)(e; } v) bx, :(v) (2.40)

and the asymmetric energy current is, for :=1,..., 3

w (a), 4
x, : = :

v # V

1
2 |v|2 w (a)

x, :(v)= :
v # V

1
2 (e: } v) |v|2 bx, :(v) (2.41)

In the same way the currents associated to the adjoint operator L*
are given by

w* , ;
x, : =/ {:Ib('x)&w (a), ;

x, : (2.42)

with :=1,..., 3 and ;=0,..., 4.
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Time Reversal Invariance. Define for any configuration ' the
configuration S' as

S'=['(x, &v), x # 4L , v # V]

Define the operator S that flip the velocities acting on functions of '
as

Sf (')= f (S')

We claim that

LS=SL* (2.43)

This is equivalent to show that

LaS=&SLa , LsS=LsS

where La and Ls are the antisymmetric and symmetric part of the gener-
ator L.

This property is easily seen by direct inspection

(Lex
a Sf )(')= :

v # V

:
e # D

:
x # Z 3

(e } v) '(x, v)[ f ((S')x, x+e, v)& f (S')]

(SLex
a f )('))= :

v # V

:
e # D

:
x # Z 3

(e } v) S'(x, v)[ f (S(')x, x+e, v))& f (S')]

= :
v # V

:
e # D

:
x # Z 3

(e } v) '(x, &v)[ f ((S')x, x+e, &v)& f (S')]

=& :
v # V

:
e # D

:
x # Z 3

e } v'(x, v)[ f ((S')x, x+e, v)& f (S')]

We have used that

[S('x, x+e, v)](z, w)=(S')x, x+e, &v (z, w) (2.44)

In fact,

[S('x, x+e, v)](z, w)=('x, x+e, v)(z, &w)
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and

(S')x, x+e, &v (z, w)

(S')(x+e, &v)='(x+e, v) if z=x and w=&v
={(S')(x, &v)='(x, v) if z=x+e and w=&v (2.45)

(S')(z, w)='(z, &w) otherwise

By comparison of (2.45) with

'(x+e, v) if z=x and &w=v
'x, x+e, v(z, &w)={'(x, v) if z=x+e and &w=v

'(z, &w) otherwise

we get

('x, x+e, v)(z, &w)=(S')x, x+e, &v (z, w)

and then (2.44).
It is obvious that Lex

s commute with S. It is also true that Lc com-
mute with S. In fact, if in a site x there is a collision with ingoing velocities
v1 , v2 and outgoing v$1 , v$2 the collision with reversed velocities is still
admissible since conserve momentum and energy.

The property (2.43) says that the dynamics is invariant under time
reversal.

Hydrodynamical Equations on the Euler Scale. We start the
process from the local measure (2.28) with chemical potentials n(=x, 0)
slowly varying in space. Then we look at the system on Euler time scale,
that is we consider the generator =&1L instead of L. We denote by ft the
density of the process at time t with respect to the reference measure +L, r, % .
The microscopic conservation laws imply that for any smooth test function
J on the torus and for ;=0,..., 4

d
dt

=3 :
x

J(=x) E ft +L, r, %[I;('x)]==2 :
x

:
3

:=1

J(=x) {&
: E ft +L, r, %[w;

x, :] (2.46)

We assume that the measure ft +L, r, % is well approximated by the local
equilibrium measure with chemical potentials nt(x)=(*0(=x, t),..., *4(=x, t)).
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Then the macroscopic quantities corresponding to the conserved quantities
I; are the mass density \

\(=x, t)=E +L, nt[I0('x)]= :
v # V

f (x, v, nt) (2.47)

the momentum density u; for ;=1,..., 3

u;(=x, t)=E +L, nt[I;('x)]= :
v # V

(e; } v) f (x, v, nt) (2.48)

and the energy density

E(=x, t)=E +L, nt[I4('x)]= :
v # V

1
2 |v| 2 f (x, v, nt) (2.49)

The macroscopic currents, for :=1,..., 3, are the mass current

j:(=x, t)=E +L, nt[w0
x, :]=/ {:\(=x, t)& :

v # V

(e: } v) h(x, v, nt) (2.50)

where

h(x, v, nt)= f (x, v, nt)& f 2(x, v, nt) (2.51)

the stress tensor

?:, ;(=x, t)=E +L, nt[w;
x, :]=/ {:u;(=x, t)& :

v # V

(e: } v)(e; } v) h(x, v, nt)

(2.52)

and the energy current

g:(=x, t)=E +L, nt[w4
x, :]=/ {:E(=x, t)& :

v # V

1
2 (e: } v) |v|2 h(x, v, nt) (2.53)

From the conservation laws (2.46), we obtain the following
hydrodynamical equations

�
�t

\+ :
3

:=1

�: j:= 0

�
�t

u;+ :
3

:=1

�:?:, ;=0 (2.54)

�
�t

E+ :
3

:=1

�:g:= 0
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where �: is the partial derivative with respect to the macroscopic coor-
dinate z: .

2.4. Formal Derivation of the Navier�Stokes Equations

We now consider the incompressible limit: first we choose as initial
state the equilibrium measure (2.28) with chemical potential n(x)=
(n0(x),..., n4(x)) given by

n;(x)=*(0)
; +=* (1)

; (=x)+=2* (2)
; (=x) (2.55)

where * (1)
; , * (2)

; are smooth periodic functions and where * (0)
; =r$;, 0+

%$;, 4 . We consider a diffusive scaling, that is L is replaced by =&2L. Then
the conservation laws (2.46) become

d
dt

=3 :
x

J(=x) E ft +L, r, %[I;('x)]== :
x

:
3

:=1

J(=x) {&
= E ft +L, r, %[w;

x, :] (2.56)

where ft +L, r, % is the law of the process at time t.
On this time scale the local equilibrium is not enough and some

correction to the local equilibrium is needed. The form of this correction
can be guessed by =-expansion arguments as in [EM] and will give rise to
the dissipative term in the limiting equations not coming from the sym-
metric part of the exclusion process. The diffusion coefficients are given by
expressions like the Green�Kubo formulas. We do not give here the explicit
expression of the correction, that we call R and is of order =2, because it
will be given in the entropy argument in the next section. In conclusion we
assume that the non-equilibrium measure is well approximated by the
measure with chemical potentials n(x, t) given by

n;(x, t)=* (0)
; +=* (1)

; (=x, t)+=2* (2)
; (=x, t), ;=0,..., 4 (2.57)

and a correction of order =2. In this case the density of particles f (x, v, nt)
(see (2.29)) with velocity v # V on site x # 4L at time t has the following
Taylor expansion

f0+=f1[* (1)
0 +*

�
(1) } v+ 1

2 |v|2 * (1)
4 ](=x, t)

+=2f2[* (2)
0 +*

�
(2) } v+ 1

2 |v|2 * (2)
4 ](=x, t)

+=2f� 2[(*
�

(1) } v)2+(* (1)
0 )2+ 1

4 |v|4 (* (1)
4 )2

+2(*
�

(1) } v) * (1)
0 +(*

�
(1) } v) * (1)

4 +|v| 2 * (1)
0 * (1)

4 ](=x, t)+o(=2) (2.58)
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where *
�

(i )=(* (i )
1 ,..., * (i )

3 ) and

f0=
er+%( |v|2�2)

1+er+%( |v|2�2)
, f1=

er+%( |v|2�2)

(1+er+%( |v|2�2))2
= f0(1& f0) (2.59)

f1= f2 and f� 2= 1
2 f0(1& f0)(1&2f0). Here and below o(=k) and O(=k)

denote quantities going to 0 faster than =k and as =k respectively.
For any function h on V, we let (h)=�v # V h(v) and we denote by

N=(1) the cardinality of V. Remark that since V satisfies (IR) the iden-
tity (*

�
} v) =0 holds for any vector in R3. Then using (2.47), (2.48) and

(2.49), the mass, momentum and energy densities have the following first
order Taylor expansions

\(=x, t)=\(0)+=\(1)(=x, t)+o(=)

u;(=x, t)==u (1)
; (=x, t)+o(=), ;=1,..., 3 (2.60)

E(=x, t)=E(0)+=E(1)(=x, t)+o(=)

where \(0)=( f0) , E(0)= 1
2 ( f0 |v|2) and

\(1)=( f1) * (1)
0 + 1

2 ( f1 |v|2) * (1)
4

u (1)
; = 1

3 ( f1 |v| 2) * (1)
; , ;=1,..., 3 (2.61)

E(1)= 1
2 ( f1 |v| 2) * (1)

0 + 1
4( f1 |v|4) * (1)

4

The second order Taylor expansion of h(x, v, nt) (see (2.51)) is

h0+=h1[* (1)
0 +*

�
(1) } v+ 1

2 |v|2 * (1)
4 ](=x, t)

+=2h2[* (2)
0 +*

�
(2) } v+ 1

2 |v|2 * (2)
4 ](=x, t)

+=2h� 2[(*
�

(1) } v)2+(* (1)
0 )2+ 1

4 |v|4 (* (1)
4 )2

+2(*
�

(1) } v) * (1)
0 +(*

�
(1) } v) |v|2 * (1)

4 +|v| 2 * (1)
0 * (1)

4 ](=x, t)+o(=2) (2.62)

where

h0= f1= f0(1& f0)

h1=h2= f1(1&2f0) (2.63)

h� 2= 1
2 f0(1& f0)(1&2f0)(1&6f0(1& f0))

From (2.50), (2.52) and (2.53), we can compute the second order
Taylor expansions of the mass current, the stress tensor and energy current.
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There is also the second order in = contribution coming from the correction
R to the equilibrium measure. These terms are combination of gradients of
the conserved quantities with suitable constant coefficients, which are
indeed the diffusion coefficients D:, ;

#, $ , :, ;=0,..., 4, #, $=1, 2, 3. Their
properties are discussed in Section 4. Call D=/I+D� .

j:(=x, t)==/ {: \(=x, t)&=j (1)
: (=x, t)&=2j (2)

: (=x, t)

+= :
3

;=1

{;[D� 0, 0
:, ; \+D� 0, 4

:, ;E]+o(=2)

?:, ;(=x, t)==/ {:u;(=x, t)&? (0)
:, ;&=? (1)

:, ;(=x, t)&=2? (2)
:, ;(=x, t)

+= :
3

;, $=1

D� ;, #
:, ; {$u#+o(=2), ;=1,..., 3

g:(=x, t)==/ {:E(=x, t)&=g (1)
: (=x, t)&=2g (2)

: (=x, t)

+= :
3

;=1

{;[D� 4, 0
:, ; \+D� 4, 4

:, ;E]+o(=2) (2.64)

Using the (IP) and (IR) properties of the velocity set V, we get for
:=1,..., 3

j (1)
: = 1

3 (h1 |v|2) * (1)
:

j (2)
: = 1

3 [(h2 |v|2) * (2)
: +2(h� 2 |v|2) * (1)

: * (1)
0 +(h� 2 |v|4) * (1)

: * (1)
4 ]

? (0)
:, ;=$:, ;

1
3 (h0 |v| 2)

? (1)
:, ;=$:, ;

1
3 [(h1 |v| 2) * (1)

0 + 1
2(h1 |v|4) * (1)

4 ]

? (2)
:, ;=$:, ;

1
3 [(h2 |v| 2) * (2)

0 + 1
2 (h2 |v|4) * (2)

4 ]+(h� 2v:v;(v } *
�

(1))2)

+$:, ;
1
3 [(h� 2 |v|2)(* (1)

0 )2+ 1
4 (h� 2 |v|6)(* (1)

4 )2+(h� 2 |v| 4) * (1)
0 * (1)

4 ]

g (1)
: = 1

6 (h1 |v|4) * (1)
:

g (2)
: = 1

3 [ 1
2(h2 |v|4) *(2)

: +(h� 2 |v|4) * (1)
0 * (1)

: +(h� 2 |v|6) * (1)
4 * (1)

: ] (2.65)

Therefore, up to a term o=(1), the conservation laws (2.56) with (2.60) give
rise to

�t \(1)=&=&1a0 div *
�

(1)&*
�

(1) } {[A0* (1)
0 +B0* (1)

4 ]&C0 div *
�

(2)

+ :
3

:=1

[/+D� 0, 0
:, :] �2

:\(1)+ :
3

:=1

D� 0, 4
:, : �2

:E(1) (2.66)
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where div *
�

(i )=�3
:=1 �:* (i )

: , if J is a smooth function on R3, {J=
(�1J,..., �3 J ) and

a0= 1
3 (h1 |v| 2) , A0= 2

3 (h� 2 |v|2) , B0= 1
3 (h� 2 |v| 4)

and

C0= 1
3 (h2 |v| 2) (2.67)

in (2.66) we have used the property (4.13) of the matrix D stated in
Theorem 4.5. The momentum density satisfies the PDE (up to a term
o=(1))

�t u (1)
; =&=&1�;[a1* (1)

0 +b1* (1)
4 ]&�;p&A1�;((* (1)

; )2)&B1 :
3

:=1

* (1)
: �: * (1)

;

+ :
3

:, #=1

�2
:[/+D� ;, #

:, :] u (1)
# (2.68)

where

a1= 1
3 (h1 |v| 2) , b1= 1

6 (h1 |v| 4) , A1=(h� 2(v4
1&3v2

1v2
2))

and

B1=2(h� 2 v2
1v2

2) (2.69)

and the pressure p is defined by

p= 1
3 (h2 |v|2) * (2)

0 + 1
6 (h2 |v|4) * (2)

4 + 1
3 (h� 2 |v|2)(* (1)

0 )2+ 1
12 (h� 2 |v|6)(* (1)

4 )2

+ 1
3 (h� 2 |v|2) * (1)

0 * (1)
4 +(h� 2 v2

1v2
2) |*

�
(1)| 2 (2.70)

The energy equation is

�t E
(1)=&=&1a2 div *

�
(1)&*

�
(1) } {[A2* (1)

0 +B2* (1)
4 ]&C2 div *

�
(2)

+ :
3

:=1

[/+D� 4, 4
:, :] �2

: E(1)+ :
3

:=1

D4, 0
:, :�2

:\(1) (2.71)

with

a2= 1
6 (h1 |v| 4) , A2= 1

3 (h� 2 |v|4) , B2= 1
6 (h� 2 |v| 6)
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and

C2= 1
6 (h1 |v| 4) (2.72)

We have to choose the chemical potentials *(1) such that the terms of
order =&1 vanish in (2.66), (2.68) and (2.71), that is

div *
�

(1)= :
3

:=1

�:* (1)
: =0 (2.73)

and

(h1 |v|2) * (1)
0 + 1

2 (h1 |v| 4) *(1)
4 =const (2.74)

From a physical point of view, this last condition can be derived from
the Boussinesq condition (BC): the first order term in the Taylor expansion
of the pressure, that is the diagonal part of the stress tensor, is constant.

Now we can derive the Navier�Stokes equations. We choose r, % and
| irrational in such a way that the coefficient in front of the unusual term
�;(*(1))2) in (2.68) vanishes. For example, %=0 and |2=5 - 3 for any r
satisfy A1=0 (see (2.69)). Moreover from (2.61), we have ( f1 |v|2) * (1)

; =
3u (1)

; , so using (2.73) and (2.74), the momentum equation (2.68) becomes

div u(1)=0
(2.75)

�t u (1)
; +�;p+Ku(1) } {u (1)

; = :
3

:, #=1

D;, #
: �2

:u (1)
#

where

K=18
(v2

1v2
2 h� 2)

(h0 |v|2) 2 (2.76)

and

D:, ;=B1+B2 $:, ; (2.77)

(see (4.12)).
The equation corresponding to the energy conservation law is usually

written as an equation for the temperature. For a real particle system the
temperature is the inverse of the coefficient ; in front of the Hamiltonian
in the Gibbs measure. Hence it coincides with the variance of the velocity
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distribution, which is in this case a Gaussian. For models with discrete
velocities that is no longer true, and the right choice as explained in [ED],
[C] is the first one. In our notation

T=*&1
4

As a consequence the internal energy is in general a complicated non linear
function of T. Nevertheless, the first correction to the temperature T (1),
defined as T=T (0)+=T (1)+O(=2), is easily find as

T (1)=&
1
%2 * (1)

4

where %=*(0)
4 is the main term in the Taylor expansion of *4 . Hence both

\(1) and E(1) are affine functions of T (1)

\(1)=c(h0) +
%281

2(h1 |v|2)
T (1)

(2.78)

E(1)=c
(h0 |v|2)

2
+

%282

4(h1 |v| 2)
T (1)

where c=const�((h1 |v|2) ) and const stands for the constant appearing in
the Boussinesq condition (2.74) and

81=(h1 |v|4)(h0)&(h1 |v|2)(h0 |v|2)
(2.79)

82=(h0 |v| 4)(h1 |v| 2) &(h1 |v|4)(h0 |v|2)

Notice that T (1) can be written in terms of \(1) and E(1) as

T (1)=
2

%28�
((h0 |v| 2) \(1)&2(h0) E(1)) (2.80)

with

8� =(h0 |v|4)(h0)&(h0 |v|2) 2 (2.81)

this expression suggests to consider the conserved quantity I$4 , which is a
linear combination of the others given by

I$4=
2

%28�
((h0 |v|2) I0&2(h0) I4) (2.82)
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such that E +L, nt[I$4]=AT+T (1)+O(=2), where the constant is

AT :=
2

%28�
((h0 |v|2)( f0)&2(h0)( f0 |v| 2) )

Then (2.71) (by eliminating the term div *
�

(2)) and (2.78) give the equa-
tion for the temperature

�
�t

T (1)+Hu
�

(1) } {T (1)= :
3

:=1

K:(�2
:T (1)) (2.83)

where

K:=/+
81

82+C81

(CD� 0, 0
:, :&D4, 0

:, :)+
82

82+C81

(D� 4, 4
:, :&CD0, 4

:, :) (2.84)

H=
1

(h0 |v|2)
91&2C92

82+C81

(2.85)

with

91=(h� 2 |v|6)(h1 |v| 2) &(h� 2 |v|4)(h1 |v|4)

92=(h� 2 |v|4)(h1 |v| 2) &(h� 2 |v|2)(h1 |v|4) (2.86)

C=
1
2

(h1 |v|4)
2(h1 |v| 2)

Moreover, the term div *
�

(2) in (2.71) is determined, by using also (2.66), in
terms of the *(1)'s and their derivatives as

&(C0+C2) div *
�

(2)

=�t(\(1)+E(1))& :
3

:=1

:
$=0, 4

[D� $, 0
:, : �2

: \(1)+D� $, 4
:, :�2

:E(1))]

+*
�

(1) } {[(A0+A2) * (1)
0 +(B0+B2) * (1)

4 ] (2.87)

The Navier�Stokes equations (2.75) and (2.83) differ in many aspects
from the usual ones. First of all the coefficient K in (2.75) is different from 1.
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This is a minor point since it can be eliminated by scaling the time, but
it has to be positive. For example, we can choose r>0 in (2.59) so that
f0( |v| )> 1

2 for any v # V which implies 1&2f0<0 and if f0 # (1�2, z), z=
(3+- 3)�6 so that 1&6f0(1& f0)<0, we get for h� 2 in (2.63)

h� 2= 1
2 f0(1& f0)(1&2f0)(1&6f0(1& f0))>0

One possible choice is r # [1�2, r� ], r� =log z�(1&z), %=0, |2=5 - 3.
Moreover, the viscosity is determined by two different constants,

namely is anisotropic as in all the known cellular automata models. In par-
ticular, the model in [EMY3] has the same lack of isotropy.

In the equation for the temperature the constant H is different from 1
and we cannot use time scaling again to get rid of it. Moreover, its
positivity is not evident and has to be checked.

Proposition 2.2 (Positivity properties of the coefficients).
The inequality 82�0 holds. If f0� 1

2 , then 81�0 and 92�0. If moreover
f0 # [ 1

2 , (3+- 3)�6] then 91�0.

Proof. We start by 81

81=(h1 |v|4)(h0)&(h1 |v|2)(h0 |v|2)

= :
v, v$

h0(v) h0(v$) b(v$) |v$|2 [|v|2&|v$|2]

= 1
2 :

v, v$

h0(v) h0(v$)[b(v$) |v$| 2&b(v) |v|2][ |v|2&|v$|2]

where b(v)=2f0(v)&1>0 (for f0> 1
2). Therefore |v|2 b(v) is an increasing

function of v and we get that 81�0.
We now examine 82 .

82=(h0 |v|4)(h1v2) &(h1 |v|4)(h0 |v|2)

= 1
2 :

v, v$

h0(v) h0(v$)[b(v)&b(v$)] |v|4 |v$|2

= 1
2 :

v, v$

h0(v) h0(v$)[b(v)&b(v$)][ |v| 2&|v$| 2] |v$| 2 |v| 2

Since b(v) is an increasing function of |v| , 82 is positive.

677Thermal Stochastic Lattice Gas



Now we study 91 and 92 .

91=(h� 2 |v|6)(h1 |v|2) &(h� 2 |v|4)(h1 |v|4)

= :
v, v$

h1(v) h1(v$) g(v) |v| 4 |v$| 2 [ |v|2&|v$| 2]

= 1
2 :

v, v$

h1(v) h1(v$) |v$|2 |v|2 [ |v| 2 g(v)&|v$|2 g(v$)][ |v| 2&|v$|2]

where g(v)=1&6f0(1& f0). We have that g(v)�0 if f0 # [ 1
2 , (3+- 3)�6],

so that by choosing suitable r we get g(v)�0. On the other hand g(v) is
increasing since

d( |v| )&d( |v$| )=[ f0( |v| )& f0( |v$| )][ f0( |v| )+ f0( |v$| )&1]>0

for |v|>|v$| and f0> 1
2 . Hence 91�0.

The constant 92 is dealed with in a analogous way.

92=(h� 2 |v|4)(h1 |v|2)&(h� 2 |v|2)(h1 |v|4)

= 1
2 :

v, v$

h1(v) h1(v$)[ g( |v| ) &g( |v$| )][ |v| 2&|v$|2]

Hence 92�0. K

Finally we remark that, since f0(v) is independent of v at %=0, 82 and
92 vanish at %=0. Moreover it is easy to see that 81<0 and 91<0 at
%=0 (and r # (0, r� )), so that we have also H>0. By continuity arguments
H remains positive for small %. We recall here that, with this choice for r
and %, h� 2>0 so that also the coefficient K in the momentum equation is
positive.

The last remark is about the conductivity. We observe that for ;=0
we have that

C=
(3� &1)4, 4

(3� &1)0, 4 , 82=0

where 3� is the 4_4 compressibility matrix defined in (4.9). Hence we can
rewrite K as

K:=/+(3� &1)0, 4 _ 81

82+C81

(3 &1D)0, 0
:, :&

82

82+C81

(3 &1D)0, 4
:, :&

where again 3 is defined in (4.9).
We prove in Section 4 that (3 &1D) is non negative as a quadratic

form and symmetric. This implies that the diagonal elements are non
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negative. Therefore, for ;=0 we have K&/�0. Were we able to prove
the strict positivity of (3 &1D), then for ;{0 but small by continuity in ;
of the diffusion matrix [LOY2] the difference K&/ would remain
positive.

We write for future use the equations for the chemical potentials * (1)
: ,

:=0,..., 4 associated to the Navier�Stokes equations (2.75) and (2.83):
*
�

(1)=(* (1)
1 ,..., * (1)

3 ), * (1)
4 and p$= p(3�(h0 |v| 2) ) are solutions of

div *
�

(1)=0

�t * (1)
; +�;p$+K$*

�
(1) } {* (1)

; = :
3

:=1

D: �2
:* (1)

; , ;=1,..., 3 (2.88)

�
�t

*1
4+H$*

�
(1) } {* (1)

4 = :
3

:=1

K: �2
: * (1)

4

where

K$=6
(h� 2v2

1 v2
2)

(h0 |v|2)
and H$=H

( |v| 2 h0)
3

(2.89)

K: are defined in (2.84) and (2.85).
Moreover * (1)

0 is determined by the Boussinesq condition (2.74), *
�

(2) is
chosen such that (2.87) is valid and finally, * (2)

0 and * (2)
4 are taken such that

the pressure p defined by (2.70) satisfies 3p=(h0 |v|2) p$.
We can now state the main theorem of the paper

Theorem 2.3. Consider the velocity set V in Section 2.2 and
assume that it satisfies (2.17). Let u(1)(z, t), T (1)(z, t), t # [0, t0], t0>0 be
any smooth classical solution of the equations (2.75) and (2.83), with D: 's
and K: 's given by (4.11) and (2.84). We start the process 't(x, v) with gen-
erator =&2L from the measure +L, n defined in (2.28), with chemical poten-
tials n:(x) of the form (2.55), satisfying (2.73) and (2.74). We define the
mass, momentum, energy and temperature empirical fields as

&=
0(z, t)==2 :

x # 4L

$(z&=x)(I0('x(t))&( f0) )

&=
;(z, t)==2 :

# 4L

$(z&=x) I;('x(t)), ;=1,..., 3
(2.90)

&=
4(z, t)==2 :

x # 4L

$(z&=x)(I4('x(t))&( f0 |v|2) )

(&$)=
4(z, t)==2 :

x # 4L

$(z&=x)(I$4('x(t))&AT)
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Then (&1(z, t),..., &3(z, t)) and (&$)4 (z, t) converge, for t�t0 , weakly in
probability to u(1)(z, t) dz and T (1) dz. Moreover &=

0(z, t) and &=
4(z, t) con-

verge to \(1)(z, t) dz and E(1)(z, t) dz, related to T (1) by (2.78).

Remark. It is well known that smooth classical solutions of the
incompressible Navier�Stokes equation do exist at least locally in time for
general initial data and globally in time for a suitable class of initial data.
We refer the reader to the book [La]. Given such a solution, the existence
of a smooth classical solution of the equation for the temperature follows
from general theorems for parabolic equations ([Fr]).

3. ENTROPY

Let ft be the density with respect to the reference measure +L, r, % of the
process 't(x, v) with generator =&2L initially distributed with +L, n where
the chemical potentials n=(n0 ,..., n4) satisfy

n;(x)=*(0)
; +=* (1)

; (=x)+=2* (2)
; (=x) (3.1)

with * (0)
; =r$;, 0+%$;, 4 . The density with respect to +L, r, % describing the

local equilibrium up to the second order in = is

9t=Z&1
L, n exp {= :

x # 4L

:
4

;=0

(* (1)
; (=x, t)+=* (2)

; (=x, t)) I;('x)= (3.2)

This density is not suitable to describe the behavior of the system on the
diffusive scale because the local equilibrium is not conserved in time. We
need to consider a modified density including a suitable correction to the
local equilibrium.

Given local functions F ;
: , we define

8(')=& :
x # 4L

:
3

:=1

:
4

;=0

�:*;(=x, t)(|̂ V {y F ;
:)x (3.3)

where |̂ is some approximation of identity which will be defined later (see
(3.17)) and V means convolution on the lattice Z3.

We now modify the 9t with second order terms given by (3.3):

9� t=Z� &1
L, n exp {= :

x # 4L

:
4

;=0

((* (1)
; V |̂)(=x, t)+=(* (2)

; V |̂)(=x, t))

_I;('x)+=28(')= (3.4)

where Z� L, n is the normalization constant.

680 Benois et al.



3.1. Assumptions on the Chemical Potentials

We choose the chemical potentials * (1)
; (x, t), ;=1,..., 4 in (3.1), with

initial values * (1)
; (x), as smooth solutions of the equations (2.88) and

*(1)
0 (x, t) determined by the Boussinesq condition (2.74). Moreover we

require that * (2)
; (x) satisfy (2.71) with p=((h0 |v|2)�3) p$ and (2.87).

We will show that the non-equilibrium density ft is near to the density
9� t in the sense of the relative entropy. If f and g are two densities with
respect to +L, r, % , the specific relative entropy of f and g is

s( f | g)==3E _ f log
f
g& (3.5)

where E[ } ] denotes the expectation with respect to +L, r, % . When g=1, we
simply denote s( f | 1) by s( f ).

The main result of this section is the following

Theorem 3.1. Consider the density 9 t*

9 t* :=Z&1
L, n exp {= :

x # 4L

:
4

;=0

* (1)
; (=x, t)=

and let the assumptions on the chemical potentials above fulfilled. Then the
specific relative entropy s( ft | 9 t*) satisfies

lim
= � 0

=&2s( ft | 9 t*)=0 (3.6)

This result, together with the entropy inequality, is enough to con-
clude the proof of Theorem 2.2. We recall that the entropy inequality states
that for any random variable X and for any #>0

E f [X]�
=&3

#
s( f | g)+

1
#

log E g[exp(#X )] (3.7)

Since 9 t* differs from 9t by terms of order =2 by Lemma 3.1 in
[EMY3] it is enough to prove that there are functions F i

j such that

lim
= � 0

=&2s( ft | 9 t*)=0 (3.8)
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3.2. An A Priori Bound on Entropy

Since the reference measure +L, r, % is invariant under the dynamics, the
entropy s( ft) is a non increasing function of t. Moreover, a simple com-
putation involving Taylor expansions shows that it is of order =2 at time 0,
so that

\t�0, s( ft)�c=2 (3.9)

where c is a positive constant. More precisely, the time derivative of the
entropy is bounded above by the Dirichlet form:

d
dt

s( ft)�&c=D4L
(- ft ) (3.10)

where D4L
denotes the Dirichlet form of the process. It can be written as

D4L
(G)=Dex

4L
(G)+Dc

4L
(G) where Dex

4L
is the Dirichlet form related to the

jump part of the generator and Dc
4L

is related to the collision part. They are
given by

Dex
4L

(G)= :
x # 4L

:
v # V

:
3

:=1

/ | [({v
x, :G)(')]2 d+L, r, %

(3.11)

Dc
4L

(G)= :
x # 4L

:
q # Q

| [(Qq
xG)(')]2 d+L, r, %

where

{v
x, :G)(')=G('x, x+e: , v)&G(') (3.12)

Theorem 3.1 will be proved by estimating the time derivative of the
relative entropy. An important point in the proof of Theorem 3.1 is finding
the functions F i

j .
The strategy is to decompose the currents wi

j into the sum of a
gradient term and a term of the form Lg, i.e.,

w i
j& :

k, l

D i, l
j, k {kIl&LF i

j=0

The coefficients D i, l
j, k will be identified as the transport coefficients. This

equation will be understood as an equation in a suitable Hilbert space and
Di, l

j, k has a geometric interpretation as ``the component of the currents in
the gradient directions''.
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The transport coefficients will be discussed in Section 4. Here we state
the main theorems we need in the proof of Theorem 3.1. These results have
been proved in [EMY3]. Their proof is extended to the present model in
a straightforward way and will not be given here.

3.3. Nongradient Results

We denote by I� +l =(I� 0, l ,..., I� 4, l) the empirical averages of the con-
served quantities over the block 4l of length l:

I� ;, l=
1

(2l+1)3 :
| y|�l

I;('y), ;=0,..., 4 (3.13)

The measure +l, m , m # R5 is defined as the canonical Gibbs state of
(2l+1)3 sites with parameters such that I� +l =m. It is the uniform prob-
ability on the set 0l, m of configurations on the block 4l such that I� +l =m.
The expectation of a local function G with respect to +l, I� l

+ is denoted by
:l(G), in other words, :l(G) is the conditional expectation given the
averages I� +l

:l(G)=E +l, r[G | I� +l ] (3.14)

We call Ls, l the symmetric part of the generator L restricted to the
block 4l , that is only jumps over bounds inside 4l are allowed. From the
Proposition 2.1, the measures +l, m are the only extremal invariant
measures for Ls, l . Therefore, we can define L&1

s, l G for any function G such
that :l(G)=0. Given any local function G on 0l , the finite volume
``variance'' Vl(G, m) is

Vl(G, m)=
1

(2l1+1)3 �_ :
|x|�l1

({xG&:l(G)& (&Ls, l)&1

__ :
|x|�l1

({xG&:l(G)&�+l, m

(3.15)

where l1=l&l1�9, l large enough. The ``variance'' V(G, m) of G is given by

V(G, m)=lim sup
l � �

Vl(G, m) (3.16)

With an abuse of notation, we denote Vl(G, m) by Vl(G, r, %) when m is
associated to the chemical potential m=(r, 0, 0, 0, %).
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For an integer l, we let l� =l5 and k=l=&2�3. We assume that the box
4k is divided into cubes 4l, _ of size (2l� +1) with centers _ # (2l� +1) Z3,
|_|�k. We consider the sub-cubes 4l� 1 , _ of size l� 1=l� &l1�9 and their
union is denoted by 4� k=� |_|�k 4l1 , _ . The functions | and |̂ are the nor-
malized indicator functions

|(x)=(2k+1)&3 1[x # 4k], |̂(x)=|4� k | &1 1[x # 4� k] (3.17)

We state now the following two theorems which are the analog of
Theorems 3.10 and Eq. (3.38) in [EMY3].

Theorem 3.2. Let d+L, n=9d+L, r, % be a local Gibbs state with
smooth chemical potentials n;(x)=*;(=x) (;=0,..., 4) of the form (3.1)
and suppose G is a local function, J is a smooth function. Then for any
density f with respect to +L, r, % and for any #>0 and $ small enough

lim sup
l � �

lim sup
= � 0 {= | :

x # 4L

J(=x)((|̂ V {yG)x&E +k, I� k
+[G]) f d+L, r, %

&
c
#

V(G, r, %) | J 2(z) dz&#=&1D4L
(- f )&$&1=&2s( f | 9 )=�0 (3.18)

where V is the convolution product on Z3, k=l=&2�3, c is a positive con-
stant depending on j and #.

Define

H ;
:=H ;

0, : , H ;
x, :=w (a), ;

x, : & :
3

#=1

:
4

$=0

D� ;, $
:, # {#I$('x)&L*{xF ;

: (3.19)

Theorem 3.3. There exists a positive diffusion matrix D� =(D� ;, $
:, # )

such that

inf
(F:

; # G� )

:
3

:=1

:
4

;=0

V(H ;
: , r, %)=0 (3.20)

where G is defined in Section 4.
In [EMY3] a version of the above theorems has been proven for the

model considered there which includes only velocities in N2 . Actually the
proof in Sections 4 and 6 is more general and depends very little on the
specific model, but rather on the general properties of the collision process.

684 Benois et al.



In fact, one can easily check that the arguments used there can be extended
to the present model and hence we omit the proof for sake of shortness.

The proof of Theorem 3.1 is based on the following estimate

Theorem 3.4. For any #>0,

inf
(F :

; # G� )

lim sup
l � �

lim sup
= � 0

=&2s( fT | 9� T)

� inf
(F :

; # G� ) _c lim inf
l � �

lim inf
= � 0 |

T

0
=&2s( ft | 9� t) dt

+
CT
#

:
3

:=1

:
4

;=0

V(H ;
: , r, %)+#c& (3.21)

where C is a positive constant depending on J and #.
In fact, Theorems 3.3, 3.4 and the Gronwall lemma imply

Theorem 3.1.

Proof of Theorem 3.4. From Lemma 3.9 of [EMY3], the time
derivative of the relative entropy s( ft | 9� t) satisfies the following bound.
There exists a consant ct such that

lim
= � 0

=&2 _ d
dt

s( ft | 9� t)&=3 | ft \=&2L*&
�
�t+ log 9� t d+L, r, %&�ct (3.22)

Therefore, we have to estimate

I#= | ft \=&2L*&
�
�t+ log 9� t d+L, r, % (3.23)

We start with the term =&1L* log 9� t .

=&1L* log 9� t=:
x

:
4

;=0

:
3

:=1

(* (1)
; V |̂)(=x, t) {&

: w* , ;
x, :

+= :
x

:
4

;=0

:
3

:=1

(* (2)
; V |̂)(=x, t) {&

: w* , ;
x, : +=L*8(')

(3.24)

which is then the sum of three terms A1+A2+A3 . For the second term
A2 , we devide the currents into their symmetric and antisymmetric parts

685Thermal Stochastic Lattice Gas



(see (2.42)). Then, performing summations by parts, we get A2=B1+B2

with

B1=/= :
x

:
4

;=0

:
3

:=1

{&
: {:*(2)

; (=x, t)(I;('y) V |̂)x

(3.25)

B2== :
x

:
4

;=0

:
3

:=1

{:* (2)
; (=x, t)(w(a), ;

y, : V |̂)x

Using Taylor expansions, one can replace {&
: {:* (2)

; (=x, t) by
=2 �2

: *(2)
; (=x, t) with a negligible error. Moreover the measure ft +L, r, % is

very close to the equilibrium +L, r, % and since E[B1]=0, E ft[B1] is of
order = (see (iii), Lemma 3.8 in [EMY3]).

In order to use the non gradient estimates stated above, we introduce,
for :=1,..., 3 and ;=0,..., 4, the quantities

g;
x, :=(w (a), ;

y, : V |̂)x+!;
:(I� +k (x)) (3.26)

where, letting Y=I� +k (x), we have !;
:(Y )=&E +k, Y[(w (a), ;

y, : V |̂)0]=
&E +k, Y[w (a), ;

0, : ], that is

!0
:(Y )= :

v # V

(v } e:)[ f 2(v, n(Y ))& f (v, n(Y ))]

!;
:(Y )= :

v # V

(v } e:)[ f 2(v, n(Y ))& f (v, n(Y ))], for ;=1,..., 3 (3.27)

!4
:(Y )= :

v # V

(v } e:)
|v|2

2
[ f 2(v, n(Y ))& f (v, n(Y ))]

Here f (v, n)=E +L, n['(0, v)] and the parameters n(Y ) are chosen such that
E +L, n(Y )[I;('0)]=Y; . using Taylor expansions, we can rewrite B2 as
C1+C2 where

C1==2 :
x

:
4

;=0

:
3

:=1

�:* (2)
; (=x, t) g;

x, :+o(1)

(3.28)

C2== :
x

:
4

;=0

:
3

:=1

{:* (2)
; (=x, t) !;

:(Y )

We now turn to the term A1 . Dividing again the currents into their
symmetric and antisymmetric parts, we obtain
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A1=/=2 :
x

:
4

;=0

:
3

:=1

�2
:* (1)

; (=x, t)(I;('y) V |̂)x

+:
x

:
4

;=0

:
3

:=1

{:* (1)
; (=x, t) g;

x, :

&:
x

:
4

;=0

:
3

:=1

{:* (1)
; (=x, t) !;

:(I� +k (x))+o(1) (3.29)

From the coefficients D;, $
:, # , ;, $=0,..., 4 and :, #=1,..., 3 of the diffu-

sion matrix in Theorem 3.3, we define

D;, $
:, # =/$:, #$;, $+D� ;, $

:, # (3.30)

and we introduce these terms in A1

A1==2 :
x

:
4

;, $=0

:
3

:, #=1

D;, $
:, #(�: �#* (1)

; )(=x, t)(I$('y) V |̂)x

+= :
x

:
4

;=0

:
3

:=1

�:* (1)
; (=x, t) _g;

x, :& :
4

$=0

:
3

#=1

D� ;, $
:, #({#I$('y) V |̂)x&

&:
x

:
4

;=0

:
3

:=1

{:* (1)
; (=x, t) !;

:(I� +k (x))+o(1) (3.31)

Putting together equations (3.25), (3.28) and (3.31), we have

A1+A2+A3=C1+C2+C3+C4+o(1) (3.32)

where

C3== :
x

:
4

;=0

:
3

:=1

�:* (1)
; (=x, t)

__g;
x, :& :

4

$=0

D� ;, $
:, #({# I$('y) V |̂)x&(L*({yF ;

:) V |̂)x&
C4==2 :

x

:
4

;=0

:
3

:=1
_ :

4

$=0

:
3

#=1

D;, $
:, #(�2

:, #* (1)
; )(=x, t)(I$('y) V |̂)x

&=&2{:* (1)
; (=x, t) !;

:(I� +k (x))& (3.33)

687Thermal Stochastic Lattice Gas



We now compute the second term in the definition of I (see (3.23))

&= | ft
�
�t

log 9� t d+L, r, %

=&| ft _=2 :
x

:
4

;=0

�
�t

* (1)
; (=x, t) I� ;, k(x)

+=3 :
x

:
4

;=0

�
�t

* (2)
; (=x, t) I� ;, k(x)&+const (3.34)

With the same argument as the one we used to bound B1 , the second term
in the previous formula is negligible up to a constant. Therefore, I can be
written as

I=| [C1+C3+C5+=C6] ft d+L, r, %+o(1) (3.35)

where

C5== :
x

1� x(I� +k (x)), 1� x=1x&C6

1x(Y )== :
4

;=0
{&

�
�t

* (1)
; (=x, t) Y;+ :

4

$=0

:
3

#=1

D;, $
:, #(�2

:, #* (1)
; )(=x, t) Y$

&=&2 :
3

:=1

{: * (1)
; (=x, t) !;

:(Y )&=&1 :
3

:=1

{:* (2)
; (=x, t) !;

:(Y )=
(3.36)

and

C6=:
x

:
4

;=0

�1x

�Y; }Y;=mx
;

(Y;(x)&m;
x) (3.37)

with mx=(m0
x ,..., m4

x) and m;
x=E9t[I;('x)].

Applying Theorem 3.2 to C1 and C3 , we obtain the following bound
for I.

I�E ft[C5+=C6]+
c
#

:
3

:=1

:
4

;=0

V(H ;
: , r, %)

+$&1=&2s( ft | 9� t)+#=&1D4L
(- ft )+const+o(1) (3.38)

where liml � � lim= � 0 o(1)=0. To control C6 we need the following lemma
that will be proven later on
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Lemma 3.5. 1x satisfies the conditions

�1x

�Y; }Y;=mx
;
=o(=), ;=0,..., 4 (3.39)

Lemma 2.2 in [EMY3] and Lemma 3.5 imply that lim= � 0 E ft[=C6]=0.
Using the same arguments as in [EMY3] (see formulas above (3.32))

and [EMY1], the constant ``const'' satisfies

= :
x

1� x(mx)+const=o(1) (3.40)

Therefore, the entropy inequality gives

I�
c
#

:
3

:=1

:
4

;=0

V(H ;
: , r, %)+($&1+1) =&2s( ft | 9� t)+#=&1D4L

(- ft )

+= log E9� t _exp {:
x

(1� x(I� +k (x))&1� x(mx))=&+o(1) (3.41)

It results from the a priori estimates on entropy (3.9) and (3.10) that, when
integrated in time, the term involving the Dirichlet form in the previous
expression is bounded above by c#. Therefore, keeping in mind Theorem 3.3,
Theorem 3.4 will follow from the Gronwall lemma since by the large devia-
tion lemma (stated as Lemma 3.7 in [EMY3]) the first term of the second
line of (3.41) vanishes with =.

Proof of Lemma 3.5. We compute the first order expansion of the
variation of the antisymmetric part of the current !;

:(Y+$Y )&!;
:(Y ) in

$Y=($Y0 ,..., $Y4). Denoting h(v, n)= f (v, n)& f 2(v, n) and letting $n=
n(Y+$Y )&n(Y )=($n0 , $n

�
, $n4), we have

h(v, n+$n)&h(v, n)=\$n0+$n
�

} v+$n4

|v| 2

2 + h*(v, n)+o($n) (3.42)

with h*(v, n)= f (v, n)(1& f (v, n))(1&2f (v, n)). From Taylor expansions,

h*(v, n)=h0*+=h1* \* (1)
0 +*

�
(1) } v+* (1)

4

|v| 2

2 ++o(=) (3.43)

where h0*=h1 , and h1*=h� 2 (see (2.63)). Then, using the properties (IR)
and (IP) of the velocity set V, we have
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!0
:(Y+$Y )&!0

:(Y )

= :
v # V

(v } e:)(h(v, n+$n)&h(v, n))

==
(h� 2 |v| 2)

3
* (1)

: $n0

+ :
3

#=1
_1

3
(h1 |v|2) $:, #+=

1
3

(h� 2 |v|2) * (1)
0 +=

1
6

(h� 2 |v|4) * (1)
4 & $n#

+=
1
6

(h� 2 |v| 4) * (1)
: $n4+O(=2) (3.44)

!;
:(Y+$Y )&!;

:(Y )

= :
v # V

(v } e:)(v } e;)(h(v, n+$n)&h(v, n))

=_1
3

(h1 |v|2) $:, ;+=
1
3

(h� 2 |v|2) * (1)
0 $:, ;

+=
1
3

(h� 2 |v| 4) * (1)
4 $:, ;& $n0 + :

3

#=1

=(h� 2 v:v;v#(*
�

(1) } v)) $n#

+_1
6

(h1 |v|4) $:, ;+=
1
6

(h� 2 |v|4) * (1)
0 $:, ;

+=
1

12
(h� 2 |v|6) * (1)

4 $:, ;& $n4+O(=2) (3.45)

!4
:(Y+$Y )&!4

:(Y )

= :
v # V

(v } e:)
|v| 2

2
(h(v, n+$n)&h(v, n))

==
1
6

(h� 2 |v|4) * (1)
: $n0

+ :
3

#=1
_1

6
(h |v|4) $:, #+=

1
6

(h� 2 |v|4) * (1)
0 $:, #

+=
1

12
(h� 2 |v|6) * (1)

4 $:, #& $n#

+=
1

12
(h� 2 |v|6) * (1)

: $n4+O(=2) (3.46)
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From these equalities, we get

:
4

;=0

:
3

:=1

{:* (2)
; (=x, t)(!;

:(Y+$Y )&!;
:(Y ))

= 1
3 (h1 |v|2) div *

�
(2) $n0

+ :
3

#=1

1
3 �#[(h1 |v|2) * (2)

0 + 1
2 (h1 |v|4) * (2)

4 ] $n#

+ 1
6 (h1 |v|4) div *

�
(2) $n4 (3.47)

and

=&1 :
4

;=0

:
3

:=1

{:* (1)
; (=x, t)(!;

:(Y+$Y )&!;
:(Y ))

==[=&1 1
3 (h1) div *

�
(1)+ 1

3{((h� 2 |v|2) * (1)
0 + 1

2 (h� 2 |v|4) * (1)
4 ) } *

�
(1)] $n0

+= :
3

#=1

[=&1 1
3�#((h1 |v| 2) *(1)

0 + 1
2 (h1 |v|4) * (1)

4 )

+ 1
3�#* (1)

0 ((h� 2 |v|2) * (1)
0 + 1

2 (h� 2 |v| 4) * (1)
4 )

+(h� 2(v4
1&3v2

1v2
2) �#* (1)

# * (1)
# +(h� 2 v2

1v2
2)(*

�
(1) } {* (1)

# +�#( |*
�

(1)|2))

+ 1
6 ((h� 2 |v|4) * (1)

0 + 1
2(h� 2 |v|6) * (1)

4 ) �#* (1)
4 ] $n#

+=[ 1
6{((h� 2 |v|4) * (1)

0 + 1
2 (h� 2 |v|6) * (1)

4 ) } *
�

(1)

+ 1
6 (h� 2 |v|4) * (1)

0 + 1
2 (h� 2 |v|6) * (1)

4 ) div *
�

(1)] $n4 (3.48)

From our assumptions on the chemical potentials (see (2.73)), we have

div *
�

(1)=0 (3.49)

Moreover it results from the Boussinesq condition (2.74) that

(h1 |v|2) * (1)
0 + 1

2 (h1 |v| 4) *(1)
4 =const (3.50)

Therefore, the terms in (3.48) with a factor =&1 vanish. Notice that we also
assumed V to be such that

(h� 2(v4
1&3v2

1v2
2)) =0 (3.51)
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We now compute the variations $n as a function of $Y. Recalling that

$Y0= :
v # V

( f (v, n+$n)& f (v, n))

$Y:= :
v # V

(v } e:)( f (v, n+$n)& f (v, n)) (3.52)

$Y4= :
v # V

|v| 2

2
( f (v, n+$n)& f (v, n))

the variations $Y and $n satisfy the following linear equations (up to a neg-
ligible error term)

$Y0=(h0) $n0+
h0

2
( |v|2) $n4

$Y:=
1
3

(h0 |v|2) $n: (3.53)

$Y4=
1
2

(h0 |v|2) $n0+
1
4

(h0 |v| 4) $n4

Thus

$n0=
1

(h0) 8 \(h0 |v|4)
(h0)

$Y0&2
(h0 |v|2)

(h0)
$Y4 +

$n:=
3

(h0 |v|2)
$Y: (3.54)

$n4=
2

(h0) 8 \2$Y4&
(h0 |v|2)

(h0)
$Y0+

with

8=
(h0 |v|4)

(h0)
&

(h0 |v|2) 2

(h0) 2
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We then obtain the following partial derivatives for 1x (see (3.36)) with
respect to $Y; . First, for ;=1,..., 3,

�1x

�Y;
=&=

�
�t

* (1)
; + :

4

$=0

:
3

#=0

D;, $
:, #(�:�#* (1)

$ )

&=
3

(h0 |v| 2) _
1
6

(h� 2 |v|2) �;(* (1)
0 )2

+
1
6

(h� 2 |v|4) �;(* (1)
0 * (1)

4 )+
1

24
(h� 2 |v|2) �;(* (1)

4 )2

+(h� 2v2
1v2

2) \*
�

(1) } {* (1)
; +

1
2

�; |*
�

(1)|2+&
&=

3
(h0 |v| 2) _

1
3

(h1 |v|2) �;* (2)
0 +

1
6

(h1 |v|4) �; *(2)
4 &+o(=)

=&=
�
�t

* (1)
; +=D:(�2

: * (1)
$ )&=�;p$&=K$*

�
(1) } {* (1)

; +o(=) (3.55)

where we used the properties of the matrix D in Theorem 4.5 and div *
�
=0,

K$ is defined in (2.89), p$=3(h0( |v|2) )&1 p and p is given by (2.70). Since
*(1)

; satisfies (2.88), we obtain

�1x

�Y;
=o(=) (3.56)

We now turn to the case ;=4.

�1x

�Y4

=&=
�
�t

* (1)
4 += :

$=0, 4

D4, $
:, #(�:�#* (1)

$ )

&=
2

3(h0) 8 _\(h1 |v|4)&(h1 |v|2)
(h1 |v|2)

(h0) + div *
�

(2)

+{ \(h� 2 |v|4) * (1)
0 +

1
2

(h� 2 |v|6) * (1)
4 + } *

�
(1)

&
(h0 |v|2)

(h0)
{ \(h� 2 |v| 2) * (1)

0 +
1
2

(h� 2 |v|4) * (1)
4 + } *

�
(1)&+o(=)

(3.57)
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Finally, for ;=0, we have

�1x

�Y0

=&=
�
�t

* (1)
0 += :

$=0, 4

D0, $
:, #(�: �#* (1)

$ )

&=
1

3(h0) 8 _ 1
(h0)

((h0 |v|4)(h1v2) &(h1 |v| 4)(h0 |v|2) ) div *
�

(2)

&
(h0 |v|2)

(h0)
{ \(h� 2 |v|4) * (1)

0 +
1
2

(h� 2 |v|6) * (1)
4 + } *

�
(1)

+
(h0 |v|2)

(h0)
{ \(h� 2 |v|2) * (1)

0 +
1
2

(h� 2 |v|4) * (1)
4 + } *

�
(1)&+o(=) (3.58)

To get

�1x

�Y4

=o(=),
�1x

�Y0

=o(=) (3.59)

we have to show that the equations below are satisfied

�
�t

* (1)
4 +

2
3(h0) 8 _\(h1 |v|4) &(h1 |v|2)

(h0 |v|2)
(h0) + div *

�
(2)

+{ \(h� 2 |v|4) * (1)
0 +

1
2

(h� 2 |v|6) * (1)
4 + } *

�
(1)

&
(h0 |v|2)

(h0)
{ \(h� 2 |v| 2) * (1)

0 +
1
2

(h� 2 |v|4) * (1)
4 + } *

�
(1)&

= :
3

:=1

:
$=0, 4

D4, $
:, :(�2

:* (1)
$ ) (3.60)

�
�t

* (1)
0 +

1
3(h0) 8 _\(h0 |v|4)(h1 v2)&

(h1 |v|4)(h0 |v| 2)
(h0) + div *

�
(2)

&
(h0 |v|2)

(h0)
{ \(h� 2 |v| 4) * (1)

0 +
1
2

(h� 2 |v|6) * (1)
4 + } *

�
(1)

+
(h0 |v|4)

(h0)
{ \(h� 2 |v| 2) * (1)

0 +
1
2

(h� 2 |v|4) * (1)
4 + } *

�
(1)&

= :
3

:=1

:
$=0, 4

D0, $
:, :(�2

:* (1)
$ ) (3.61)
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Equations (3.60) and (3.61) are not closed, because of the term involving
div *

�
(2). To get the final equations multiply (3.60) by 82 and (3.61) by

&281 (see (2.86)) and sum the two equations to get

82

�
�t

* (1)
4 &281

�
�t

* (1)
0 +

1
3(h0) 8

(h1 |v| 1) _\82+81

(h0 |v|2)
(h0) + 91

&\82

(h0 |v| 2)
(h0)

+81

(h0 |v| 4)
(h0) + 92&

= :
3

:=1

[(82 D4, 4
:, :&281D4, 0

:, :)(�2
:* (1)

4 )+(82D4, 0
:, :&281 D0, 0

:, :)(�2
: *(1)

0 )]

Using the condition (3.50) we get the third equation in (2.88) which is
satisfied by * (1)

4 by assumption.
Moreover, by summing the two equations, we get the condition on

(2.87) div *
�

(2) which is satisfied by assumption. K

4. TRANSPORT COEFFICIENTS AND GREEN�KUBO
FORMULAS

Fix a point x # Z3. For simplicity, we use +r instead of +r , 0. For any
f and g functions of 'x define the scalar product

( f, g) :=E +r[ f ('x); g('x)]=E +r[ f ('x) g('x)]&E +r[ f ('x)] E +r[ g('x)]

(4.1)

We have the orthogonality relations:

('(x, v), '(x, v$))=$v, v$ h0

The set I; , ;=0,..., 4 is not orthogonal because (I0 , I4){0.
Nevertheless, we will use this set in the following. Note that the set I$; ,
which differs from the previous one only for the presence of I$4 instead of
I4 , is orthogonal. We have that

(I0 , I0)=(h0) , (I: , I:)=
1
3

( |v| 2 H0) , :=1, 2, 3

(4.2)

(I4 , I4)=�h0

|v|4

4 �, (I0 , I4)=(I4 , I0)=�h0

|v|2

2 �
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We introduce a function space G similar to the one in [EMY3].

Definition 4.1. Let G be the space of local functions of ' satisfying

E +r[ g]=0, :
x

E +r[ g; I:('x)]=0, :=0,..., 4 (4.3)

Let &m be the product measure such that E &m[I:]=m: for :=0,..., 4 and
ĝ(m)=E &m[ g]. Then the second condition in (4.3) is equivalent to

�ĝ(m)
�m: }m=m�

=0, :=0,..., 3 (4.4)

where m is the vector [m: , :=0,..., 4] and m� :=E &m[I:], :=0,..., 4, are the
values corresponding to the equilibrium measure +r .

Let

G0={ :
4

:=0

:
3

j=1

a:, j {jI:('0), a:, j # R=
be the space of the gradients of the conserved quantities. Here

{j g(')= g({ej
')& g(')

with ({x')( y, v)='( y+x, v) and ({x f )(')= f ({x '). Define the semi-norm

& }&2
&1=V( } )

where V( } ) is the infinite volume variance defined by (3.16). We introduce
the following equivalence relation: two elements of G are equivalent if they
differ by an element of G0. The quotient of G w.r.t. this equivalence relation
will be denoted by G"G0.

4.1. Structure Theorems

The following Theorems are proved as in [EMY3], Sections 4 and 6.

Theorem 4.2. For all g # G, one has &g&&1<�. Furthermore, let
G� denote the closure of G under the semi-norm & }&&1 and define

(( g, h)) = 1
4 [&g+h&&1+&g&h&&1] (4.5)
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Then (( } , } )) is an inner product and G� equipped with this inner product
is a Hilbert space. Moreover G� can be decomposed as

G� =Ls[G"G0]�G0 :=H (4.6)

We introduce the currents _;
:

_:
;=w:

;& :
#�0

A:, #
; I� #('0), _*:

; =w*:
; & :

#�0

A*:, #
; I� #('0) (4.7)

where I� #('0)=I#('0)&E +r[I#('0)]. The constants A:, #
; (A*:, #

; ) are fixed by
the condition that _:

;(_*:
; ) # G.

Theorem 4.3.

(i) LG+G0 =G� =L*G+G0

(ii) Let Gw=[�:�0, j�1 b:
j _:

j ]. Then

Gw+Ls G=G� =Gw+LG; Gw*+L*G=G� (4.8)

The proof of these Theorems is based essentially on the properties of
the symmetric simple exclusion (see [LY] and [EMY3]) and on the
following properties of the collision operator: the collisions are local,
binary and conserve only the quantities I: . Since these properties are true
also for the model we are considering in this paper, the proof is easily
extended to it.

The main step in proving the previous Theorem is solving the resol-
vent equation for L. We summarize some of the results on the resolvent
equation, that we will need below, in next Theorem.

If f and g are local functions, we define the inner product

( f, g) 0=:
x

{x( f, g)

Theorem 4.4. Let H0 and H1 be the completion of the spaces

H0=[ f local : & f &2
0 :=( f, f ) 0<�]

H1=[ f local : & f &2
1 :=( f, (&Ls) f ) 0<�]
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Let h # G. Then

(i) For any =>0 there exists a local function u= # G such that

&Lu=&h&&1�=

(ii) u= converges strongly in H1 to some g # H1

(iii) The solution u* of the resolvent equation *u*&Lu*=h con-
verges strongly in H1 to the same g

(iv) lim* � 0 &*u*&0=0

The proof of these statements can be found in [EMY3], [V], [LY].

4.2. Transport Coefficients

The diffusion matrix D used in the entropy method in Section 3
represents the ``components'' of the currents in the directions of the
gradients of the conserved quantities referred to the non-orthogonal base
[I:], namely the matrix D:, ;

i, j is characterized by

_:
i & :

3

j=1

:
4

;=0

D:, ;
i, j {jI: # LG

The following theorem is taken by [EMY3], the only difference in the pre-
sent case being that the energy I4 is an independent conserved quantity and
the fact that the base [I:] is not orthogonal. To take into account the
latter, we introduce the 4_4 compressibility matrix 3� and the matrix 3

3� :, ;=(I: , I;); 3 :, ;
i, j =$ i, j3� :, ; (4.9)

Theorem 4.5. (i) Let u;
j =/ {jI; . Put a } d=� j�1, ;�0 a;

j d ;
j .

Define T to be the linear transformation from G to G s.t.

T (b } _+Lg)=b } u+Lsg (4.10)

Then T is bounded above by 1, hence can be extended by continuity
to G� . Moreover

(a) T {j I:(') = L*G for j�1, :�0

(b) ((T {i I:('), _*;
j )) =3 :, ;

i, j
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(ii) Let M be the matrix (with double indices (:, i) and (;, j))

M:, ;
i, j =(({iI:('), T {j I;(')))

Then the elements D:, ;
i, j of the diffusion matrix D are given by

D:, ;
i, j =(3M &1):, ;

i, j (4.11)

As a quadratic form, D�Ds and D{Ds , where (Ds)
:, ;
i, j =/$:, ;$i, j .

Furthermore, there exist constants Bk , k=1,..., 6 such that

D:, ;
j, k =$j, k$:, ;[B1+B2$:, j]+B3$:, j $;, k+B6$j, ; $k, : (4.12)

for :, ;=1, 2, 3,

D0, 0
i, j =$i, j B0 , D4, 4

i, j =$ i, jB4

(4.13)

D:, ;
i, j =0 {:=0, 4 and ;=1, 2, 3

:=1, 2, 3 and ;=0, 4

and

(3 &1D)0, 4
i, j =(3 &1D)4, 0

i, j =$i, jB5 (4.14)

Due to the property of T, M&1 is bounded below by M &1
s as a quadratic

form, where Ms=(({iI:('), {jI;(')))=3�/. Therefore, we have D�Ds as
a quadratic form.

Equation (4.12) and (4.13) are a consequence of the symmetry proper-
ties by spatial rotations and reflection of the dynamics of the matrix M, as
shown in [EMY3]. Equation (4.14) instead is true because of the time-
reversal symmetry. In fact, let us introduce T*, the adjoint of T w.r.t. the
scalar product (( } , } )) ,

T* \ :
j�1, ;�0

b;
j (_*);

j +L*g+= :
j�1, ;�0

b;
j u;

j +Ls g (4.15)

It is easy to see that the time reversal invariance (2.43) implies

T*S=ST
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Hence

(({i I0('), T {jI4('))) =((S {iI0('), ST {jI4(')))

=((S {iI0('), T*S {jI4(')))

=((TS {i I0('), S {jI4(')))

=((T {i I0('), {jI4(')))

We have used that S*=S, S2=I and SI0=I0SI4=I4 . That proves (4.14).
Variational formulas for the diffusion coefficients D and its inverse

D&1 can be obtained, which are very useful in proving for example
positivity and boundedness properties. We refer to [EMY3] and [LOY2],
where similar formulas are proven and discussed for a slightly simpler
model, because the extension to the present one is straightforward. Here
instead we give a rigorous argument to express the transport coefficients in
terms of the Green�Kubo formulas.

4.3. Green�Kubo Formulas

We start with a Lemma that express D in terms of the strong limit in
H1 of the sequence u= introduced in Theorem 4.4. The proof is essentially
the one given in [EMY3] (at the end of Section 5) for showing the formal
equivalence between (4.11) and the Green�Kubo formula.

Lemma 4.6. The diffusion matrix D� =D&/I satisfies

a } (D� 3) a= lim
= � 0

&a } u=&2
1 (4.16)

Proof. The currents _:
; and {:I ; belong to the space G� . The diffu-

sion coefficient is found as the matrix such that

_&D {I # LG

Hence there exists some g # LG such that

&_&D {I& g&&1=0

The function g is non-local but can be approximated by local func-
tions u= # LG such that, by the second structure Theorem,

_&D {I&Lu==h= , lim
= � 0

&h= &&1=0 (4.17)

700 Benois et al.



D is given by the expression (4.11)

a } (D&13) a=((a } {I, Ta } {I))

By (4.17) we have {I=D&1[_&Lu=&h=]. By the definition of the
map T we have that T (_&Lu=)=/ {I&Lsu= . Hence

a } (D&13) a=((a } D&1[_&Lu=&h=], a } D&1[/ {I&Lsu=&Th=]))

which implies, using the symmetry of the matrices D&13 and 3,

a } (D3) a=/((a } (_&Lu=), a } (/ {I+Ls u=)))+R=

where R==R1+R2+R3 and

R1=((a } h= , a } (/� {I&Lsu=))) �const &h=&&1 &/ {I&Ls u= &&1=o(=)

R2=((a } (_&Lu=), a } Th= , )) �const &Th=&&1 &_&Lu=&&1=o(=)

R3=((a } h= , a } Th=))�const &h=&2
&1=o(=)

It is easy to see by using the properties of the scalar product that
([EMY3])

((a } (_Lu=), a } (/ {I&Lsu=))) =/a } 3a+((a } Lu= , a } Lsu=))

Hence

a } (D3) a=/a } 3a+((a } Lu= , a } Lsu=))+R=

Since the scalar product has the property that, for f, h local functions
in G,

(( f , Lsh)) =&( f , h) 0

we have

((a } Lu= , a } &Lsu=)) =&(a } Lu= , a } u=)0

=(a } u= , &Lsa } u=) 0=&a } u=&2
1

Since R= vanishes when = goes to zero we have proved the lemma.
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Theorem 4.7. The following Green�Kubo representation for the
transport matrix D holds:

a } D3a=/a } 3a+(_ } a, (&L)&1 _ } a) 0 (4.18)

Proof. By (iii) of Theorem 4.4, we have that lim* � 0 &u*&1=
lim= � 0 &u=&1 . On the other hand, u* is the solution of the resolvent equa-
tion *u*&Lu*=_ so that

* &a } u*&2
0&&a } u* &2

1=(a } _, a } u*) 0=(a } _, (*&L)&1 a } _) 0

By (iii) and (iv) of Theorem 4.4 * &u*&0 � 0 and &u*&1 � &g&1 for some g
in H1 . Hence

lim
* � 0

&a } u*&2
1=(a } _, (&L)&1 a } _) 0=&a } g&2

1<�

Finally by (ii) of Theorem 4.4 we have that

a } (D� 3) a= lim
= � 0

&a } u=&2
1= lim

* � 0
&a } u*&2

1=(a } _, (&L)&1, a } _) 0

For any fixed *>0 we can write

( f, (*&L)&1 f ) 0=|
�

0
dt( f, Pt(*) f ) 0

where Pt(*) is the semigroup generated by L&*. By using the theorem of
dominated convergence we get in the limit * � 0 that

( f, (&L)&1 f ) 0=|
�

0
dt( f, Pt f ) 0

in conclusion we get the Green�Kubo formula for D�

a } (D� 3) a=|
�

0
dt(a } _, Pt a } _)0 (4.19)

The diffusion coefficient has been defined in different ways depending
on the point of view adopted. Spohn [S] proposed a definition based on
the long time behavior of the structure function. Adapting its definition to
our model we introduce the coefficient D(1) as

(D(1)3):, ;
i, j = lim

t � �

1
t {:

x

xix jE[I:(x, t); I;(0, 0)]& :
4

#, $=0

(v:, #
i t) 3� #$(v$, ;

j t)=
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where vi is the tensor v:, ;
i defined as

(3� vi )
:, ;=:

x

xiE[I:(x, t); I;(0, 0)]

and 3� is the compressibility matrix.
On the other hand the linear response theory gives the transport coef-

ficients expressed in terms of the Green�Kubo formulas. Call D(2) the
transport matrix as given by the Green�Kubo formula

(D(2)3):, ;
i, j =/3 :, ;

ij +|
�

0
dt(_:

i , Pt a } _;
j ) 0

Finally, there is the transport matrix D that appears in the Navier�Stokes
equations given by (4.11). One expects that all these definitions be related.
In [LOY2] it is discussed this problem for the asymmetric simple exclu-
sion process and it is shown that (D) (1) can be written also as

(D) (1)
i, j=$i, j+ lim

t � �

1
2t3 |

t

0
ds |

s

0
ds$[(_:

i , Ps$_;
j ) 0+(_:

j , Ps$_;
i ) 0]

with the compressibility 3 a scalar in that case, which is the natural form
for the diffusion coefficient in the equation for the equilibrium fluctuation
of the density field. For our model one can prove, following the argument
in [LOY2] and [S], that

(D(1)3):, ;
i, j =/3 :, ;

i, j + lim
t � �

1
t |

t

0
ds |

t

0
ds$(_:

i , Pt_;
j ) 0

Note that in our case D3 is symmetric separately in the indices :, ; and
i, j. Since we have shown above that the time integral in (4.18) is finite, we
can conclude that D(1)=D(2). Moreover, we have already shown that
D=D(2), so that we can conclude the equivalence of all the definitions.

Remark 1. In [LY] it is proven, by using martingale methods, in
the case of the simple exclusion process, that D(1)=(D(2))s where D(s) is the
symmetrization of D (and that D(1)=lim= &u=&2

1). By using the analogous
of Lemma 4.6 for the simple exclusion process it is possible to conclude
also that D=(D(2))s.

Remark 2. In [CLO], it is proved for the asymmetric simple exclu-
sion process that the scaling limit of the equilibrium fluctuation of the den-
sity is Gaussian with diffusion coefficient D(1) which is as explained above
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equal to D, so proving what in physics literature is called fluctuation-dis-
sipation theorem. An analogous result holds for the model we are consider-
ing here and we will discuss it in a forthcoming paper.

5. DERIVATION OF THE NAVIER�STOKES EQUATIONS
WITH A FORCE TERM

Given a smooth function F on R3 representing the macroscopic force,
we consider an infinitesimal generator LF which consists in flipping the
velocities of particles in such a way that the asymmetric part of the incom-
ing momentum current is equal to the force. More precisely, for a local
function f , it is given by

LFf (')=:
x

:
v, w # V

'(x, v) pF, =
v, w(x)[ f ('x, v, w)& f (')] (5.1)

with 'x, v, w the configuration obtained from ' by exchanging the values of
'(x, v) and '(x, w). The rate pF, =

v, w(x) is chosen as

pF, =
v, w(x)= :

3

:=1
\}&

F:(=x)
2(h0) v:+ $v(:)(w) (5.2)

where the velocity v(:) is obtained by flipping the sign of the i th component
of v, and h0 is defined by (2.63). Moreover, }>0 is chosen large enough
to make the jump rate positive for all v, w. Remark that with this choice,
the flip only affects the velocities in the same species, therefore the local
mass and kinetic energy are still conserved by this generator. However, the
momentum (local or global) is no more conserved and the reference
measure +L, r, % is not invariant under LF. Indeed a simple computation
shows that its adjoint (LF)* in L2(+L, r, %) is given by

((LF)* f )(')=:
x

:
v, w # V

'(x, v)[ pF, =
w, v(x) f ('x, v, w)& pF, =

v, w(x) f (')] (5.3)

and that (LF)* 1{0. Note that (LF)* can be written as

((LF)* f )(')=(L� Ff )(')+\:
x

:
v # V

:
3

:=1

F:(=x)
(h0) v:

'(x, v)+ f (') (5.4)

where L� F is the Markov generator defined by

(L� F f )(')=:
x

:
v, w # V

'(x, v) pF, =
w, v(x)[ f ('x, v, w)& f (')] (5.5)
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The velocity flip generator is slowed down by the factor =3, so that the
generator of the full dynamics is given by

L� =L+=3LF=Lex+Lc+=3LF (5.6)

The main result of this section is the next theorem.

Theorem 5.1. We make the same assumptions of Theorem 2.3,
with equations (2.75) replaced by the Navier�Stokes equation with the
force,

div u(1)=0
(5.7)

�tu (1)
; +�;p+Ku(1) } {u (1)

; &F;= :
3

:=1

D:, ; �2
:u (1)

;

and (2.83), where the coefficients K, D:.; and K: are those in Theorem 2.3.
We start the process 't(x, v) with generator =&2L� from the measure

+L, n defined in (2.28), with chemical potentials n: of the form (2.55),
satisfying (2.73) and (2.74).

Then the empirical fields &=
0(z, t), (&=

1(z, t),..., &=
3(z, t)) and &=

4(z, t) con-
verge, for t�t0 , weakly in probability to \(1)(z, t) dz, u(1)(z, t) dz and
E(1)(z, t) dz. Moreover, the linear combination (2.80) of \(1) and E(1) is the
smooth solution of the equation for the temperature (2.83).

We define the chemical potentials *(1) and *(2) in the following way.
We suppose that *

�
(1)=(* (1)

1 ,..., * (1)
3 ), * (1)

4 and p$ are solutions of

div *
�

(1)=0

�t * (1)
; +�;p$+K$*

�
(1) } {* (1)

; &
3

( |v| 2 h0)
F;= :

3

:=1

D:, ; �2
:* (1)

; , ;=1,..., 3

�
�t

* (1)
4 +H$*

�
(1) } {* (1)

4 = :
3

:=1

K: �2
: * (1)

4 (5.8)

where K$, H$ are the same coefficients as those in (2.88). Moreover * (1)
0 is

chosen such that the Boussinesq condition (2.74) holds, *
�

(2) is such that
(2.87) is valid and * (2)

0 , * (2)
4 are taken such that the pressure p defined by

(2.70) satisfies 3p=( |v|2 h0) p$.
Now let n; , ;=0,..., 4, be the chemical potentials defined by (3.1) with

*(1) and *(2) as above. We also consider the densities 9t and 9� t w.r.t. +L, r, %

given by formulas (3.2) and (3.4). As in Section 3, Theorem 5.1 will follow
if we can prove the following estimate for the non equilibrium density f� t of
the dynamics generated by L� .
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Theorem 5.2. For any $>0 there are functions F i
j ($) # G� such

that the specific relative entropy s( ft | 9� t($)) satisfies

lim
= � 0

=&2s( f� t | 9� t($))=�$ (5.9)

where 9� t($) is given in (3.4) with F i
j ($) replacing F i

j .

One of the ingredients needed in the derivation of this entropy
estimate is to get an a priori bound on the entropy production, namely
something like inequalities (3.9) and (3.10). But since the reference measure
is no longer invariant, such estimates are not trivial. That is the aim of the
next proposition.

Proposition 5.3. There are positive constants c1 and c2 such that
for any t�0,

d
dt

s( f� t)�&=c1D4L
(- f� t )+s( f� t)+c2 =2 (5.10)

where D4L
is the Dirichlet form defined after (3.16). In particular, there is

a positive constant c such that for any t�0

s( f� t)�c=2(1+et) (5.11)

Proof. We start computing the time derivative of the relative entropy
s( f� t).

d
dt

s( f� t)== | log f� t(L� *f� t) d+L, r, %+= | L� *f� t d+L, r, %

== | log f� t(L*f� t) d+L, r, %+=4 | log f� t(LF) f� t d+L, r, % (5.12)

Using the basic inequality

a(log b&log a)�&(- b&- a)2+(b&a) (5.13)

for a>0 and b>0, we get the usual bound

= | log f� tL*f� t d+L, r, %�&=c1D4L
(- f� t ) (5.14)
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The second term in (5.12) can be written as

=4 | f� t LF log f� t d+L, r, % (5.15)

then, using again (5.13), it is bounded above by

&=4DF
4L

(- f� t )+=4 | LFf� t d+L, r, % (5.16)

where DF
4L

is the Dirichlet form related to the symmetric part of the force
generator, that is

DF
4L

( f )=
}
2

:
x

:
v, w

| ( f ('x, v, w)& f ('))2 d+L, r, %�0 (5.17)

We now turn to the second term in (5.16). We first rewrite it as

=4 | (LF)* 1 f� t d+L, r, %==4E f� t _:
x

:
v, i

F i (=x)
vi

'(x, v)& (5.18)

Following the proof of Lemma 2.2 of [EMY1], namely applying the
entropy inequality and performing a Taylor expansion, it is easy to see that

=2E f� t _=2 :
x

:
v, i

Fi (=x)
vi

'(x, v)&�=2E _=2 :
x

:
v, i

Fi (=x)
vi

'(x, v)&+s( f� t)+c=2

(5.19)

where c is a positive constant. The first term on the r.h.s of the previous
inequality vanishes since the velocity set V is symmetric and since the
velocities having the same kinetic energy are uniformly distributed under
+L, r, % .

Putting together all these inequalities, we get

d
dt

s( f� t)�=c1D4L
(- f� t )+s( f� t)+c=2 K (5.20)

Proof of Theorem 5.2. As in Section 3, we start computing the time
derivative of the specific relative entropy. But since (LF)* is not a Markov
generator, we cannot quote directly [EMY1] and we get a formula slightly
different from (3.22).
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An usual computation (see [Y1]) yields to the bound

d
dt

=&2s( f� t | 9� t)�= | f� t9� &1
t \=&2L� *&

�
�t+ 9� t d+L, r, % (5.21)

Using expressions (5.6) and (5.4) to rewrite the adjoint operator of L� *, the
r.h.s of the previous inequality is also given by

= | f� t9� &1
t \=&2L� *&

�
�t+ 9� t d+L, r, %+=2 | f� t :

x

:
v

:
3

:=1

F:(=x)
(h0) v:

'(x, v) d+L, r, %

(5.22)

where L� * is the operator L� *=L*+=3L� F, L� F was defined in (5.5).
Repeating the argument at the beginning of the proof of Theorem 3.4,

it results from the entropy bound (5.11) by straightforward Taylor expan-
sions that there exists a positive constant ct such that the following
inequality holds

lim
= � 0

=&1 | ft(L� * log 9� t&9� &1
t L� *9� t) d+L, r, %�ct (5.23)

As a consequence, the time derivative of the relative entropy satisfies

d
dt

=&2s( f� t | 9� t)�J+ct (5.24)

where

J== | f� t \=&2L� *&
�
�t+ log 9� t d+L, r, %

+=2 | f� t :
x

:
v

:
3

:=1

F:(=x)
(h0) v:

'(x, v) d+
L, r, %

=I� +=2 | f� t L� F log 9� t d+L, r, %+=2 | f� t :
x

.('x) d+L, r, % (5.25)

with

.('x)=:
v

:
3

:=1

F:(=x)
(h0) v:

'(x, v) (5.26)

and I� is the same expression as the one introduced in (3.23) but with f� t
instead of ft .

708 Benois et al.



We first deal with the third term in the previous equality. We denote
by Px the orthogonal projector of functions of 'x on the subspace
generated by the invariants I;('x), ;=0,..., 4 with respect to the scalar
product ( f ('x), g('x))=E9t[ f ('x), g('x)]&E9t[ f ('x)] E9t[ g('x)]. Since
the density 9t is close to 1 when = is small, there exist a function h(v) and
a smooth function G(=x) such that

Px.('x)= :
4

;=0

(.x , I;) I;('x)+= :
x

G(=x) :
v

h(v) '(x, v)+o(=) (5.27)

where ( } , } ) is the scalar product (4.1).
The projection coefficients (., I;) can be easily computed and we

obtain the following expressions

(., I0)=(., I4)=0, (., I;)=1, ;=1,..., 3

From the entropy bound (5.11) and Lemma 2.2 of [EMY1], we know
that

E ft _=3 :
x

G(=x) :
v

h(v) '(x, v)&
=E _=3 :

x

G(=x) :
v

h(v) '(x, v)&+o(1)=const+o(1) (5.28)

Therefore

=2 | f� t :
x

.('x) d+L, r, %=
3=2

( |v| 2 h0) | f� t :
x

:
3

;=1

F;(=x) I;('x) d+L, r, %

+=2 | f� t :
x

(I&Px) .('x) d+L, r, %+const+o(1)

(5.29)

We now turn to the second term in the sum (5.25). First, we have to
determine the currents related to the force generator L� F. Since the mass
and the energy are conserved by a flip of velocity on a given site, it is clear
that L� FI;('x)=0 for both ;=0 and ;=4. Moreover, for ;=1,..., 3, we
have

L� FI;('x)=&2}I;('x)&
1

(h0)
:
v

'(x, v)(1&'(x, v(;))) F;(=x) (5.30)
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Then

=2 | fk L� F log 9� t d+L, r, %

=&=3E f� t _:
x

:
3

;=1

* (1)
; V ŵ(=x, t)

F;(=x)
(h0)

:
v

'(x, v)(1&'(x, v(;)))&
&2}=3E f� t _:

x

:
3

;=1

* (1)
; V ŵ(=x, t) I;('x)&+o(1) (5.31)

Because of the entropy bound (5.11), it results from Lemma 2.2 of
[EMY1] that we may replace the expectations w.r.t. f� t d+L, r, % by the
expectations w.r.t. +L, r, % and that such a replacement produces an error
term of order =.

Since E[I;('x)]=0 and since

E['(x, v)(1&'(x, v(;))]=(h0) (5.32)

we obtain

=2 | f� tL� F log 9� t d+L, r, %=&=3 :
x

:
3

;=1

* (1)
; (=x, t) F;(=x)+o(1)=const+o(1)

(5.33)

Finally, following step by steep Section 3, the first term I� in the sum
(5.25) satisfies inequality (3.38) when ft is replaced by f� t . So putting all
together, we have shown that (d�dt) =&2s( f� t | 9� t) is bounded above by

E f� t _= :
x

1� x(I� +} (x))&+
c
#

:
3

:=1

:
4

;=0

V(H ;
: , r, %)+$&1=&2s( f� t , 9� t)

+#=&1D4L
(- f� t )+const+o(1) (5.34)

where

1� x(Y )=1 1
x(Y )+1 2

x(Y )

1 1
x(Y )=1x(Y )+= :

3

;=1

3F;(=x)
( |v|2 h0)

Y; (5.35)

1 2
x(Y )==E+L, n(Y )[(I&Px) .('x)]

with 1x defined in (3.36).
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As in Section 3, the constant ``const'' is given by the relation

= :
x

1� x(m� x)+const=o(1) (5.36)

with m� x=(m� 0
x ,..., m� 4

x) and m� ;
x=E9t[I;('x)]. Therefore, it follows from the

entropy inequality that

d
dt

=&2s( f� t | 9� t)�
c
#

:
3

:=1

:
4

;=0

V(H ;
: , r, %)+($&1+1) =&2s( f� t , 9� t)

+#=&1D4L
(- f� t )+o(1)

+= log E9t _exp {= :
x

(1� (I� +} (x))&1� (mm� x))=& (5.37)

In the case where there is a force term, we have entropy estimates (cf.
Proposition 5.3) similar to (3.9) and (3.10), therefore the large deviation
lemma of [EMY3] can be still applied and Theorem 5.2 will be proved if
1� x satisfies

�1� x

�Y; }Y;=m� x
;
=0, ;=0,..., 4 (5.38)

Since by construction (I&Px) .('x) is orthogonal to the invariants I;('x)
w.r.t. the scalar product ( } , } )x , it is clear that

�1 2
x

�Y; }Y;=m� ;
x

=0, ;=0,..., 4 (5.39)

so that it remains to check that

�1x

�Y; }Y;=m� x
;
+=$ i, ; :

x

:
v

3f;(=x)
( |v|2 h0)

=0, ;=0,..., 4, i=1, 2, 3 (5.40)

Since the only change with respect to the computations that have been
done in the last part of Section 3 consists in the extra term
= �x �v 3F;(=x)�( |v|2 h0) in the expression of �1x ��Y; for ;=1,..., 3, we
get (5.40) because the chemical potentials *

�
(1) now satisfy (5.8). K
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